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Abstract 

To better understand the physics of the 2021 Mw 5.9 Woods Point earthquake that occurred in 
Victoria state, Australia, we apply a stochastic finite-fault approach to simulate ground motions 
for 36 selected sites. We determine the input parameter values for regional geometric 
spreading and anelastic attenuation, path duration, site amplification, and Kappa value, from 
regression analysis of the observed Fourier Amplitude Spectra (FAS). We then determine the 
dynamic stress drop value by minimizing the residuals between the simulated and observed 
5%-damped pseudo-spectral acceleration (PSA). We investigate the capability of the proposed 
stochastic model by comparing the simulated ground motions with the observations. Finally, 
we compare the simulated 5%-damped PSA with six GMMs selected for the NSHA (National 
Seismic Hazard Assessment) program, revealing that our simulations are within the 
acceptance range defined by the GMMs.  

Keywords: Woods Point earthquake; stochastic simulation; attenuation model; GMSS2.0. 

1 Introduction 
Ground motion simulation is an important approach to generating synthetic time series of 
earthquake shaking for scientific and engineering purposes, such as facilitating regional 
seismic hazard analysis (Boore, 1983; Atkinson and Boore, 1995, 2006; Edwards and Fäh, 
2013). According to Douglas (2022), over 600 ground motion models (GMMs), an important 
tool for ground motion characterisation in probabilistic seismic hazard analysis (PSHA), have 
been developed during the past 50 years (1970-2020) internationally, and ~90 of the GMMs 
are developed by simulation-based approaches. Stochastic simulation plays a particularly 
significant role in estimating ground shaking levels (especially for high-frequency ground 
motions) for low-to-moderate seismicity regions where strong ground motion observations are 
often scarce (Lam et al., 2000; Allen et al., 2007; Tang et al., 2020). For regions with abundant 
observational data, stochastic simulations are widely used in hybrid ground motion calculation 
to estimate high-frequency shaking (Pezeshk et al., 2018; Jayalakshmi et al., 2021).  

By combining band-limit Gaussian white noise with a deterministic seismological model, Boore 
(1983; 2003) proposed an approach to generate synthetic accelerograms in which the 
seismological model is used as a filter in the Fourier domain defining the amplitude spectrum 
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that is composed of source, path, and site components. Based on the source model, two 
categories of stochastic ground motion simulation can be defined, the point-source model 
(Brune, 1970; Boore, 2003) and the finite-fault source model (Beresnev and Atkinson, 1998a, 
b; Motazedian and Atkinson, 2005). These two general approaches are encoded in two widely 
used software packages, SMSIM and EXSIM, respectively (Boore, 2003; Motazedian and 
Atkinson, 2005). Compared to SMSIM (point source), EXSIM (finite-fault source) is 
advantageous in considering the geometric properties and directivity effects of earthquake 
source in the simulation process, thus allowing to estimate ground motion amplitudes for large 
earthquakes at close distances from the causative fault, with a higher level of accuracy 
(Atkinson and Assatourians, 2015). 

In this study, we use the recently developed GMSS (Ground Motion Simulation System) codes. 
Both GMSS1.0 (1D point source) and GMSS2.0 (2D finite-fault source) have been verified and 
validated against SMSIM and EXSIM, real earthquake observations, as well as GMMs (Tang 
et al. 2021; Tang 2022a, b).  

As the largest earthquake that occurred in Victoria’s recorded history, the 2021 Mw5.9 
earthquake has drawn the attention of seismologists, engineers, and other communities (e.g., 
Hoult et al., 2021; Sinadinovski et al., 2021; Love, 2021). Even though the relatively large 
amount of well-recorded data allows us to investigate ground motion properties in detail, 
simulation-based data that encode earthquake physics with well-calibrated parameters are 
needed to facilitate local seismic hazard/ risk analysis. Therefore, we simulate ground motions 
for this event (using the GMSS2.0 code) to analyse regional ground motion shaking levels that 
are important for seismic hazard analysis. 

2 Methodology 

2.1 Stochastic finite-fault modelling 

As stated in previous studies (e.g., Beresnev and Atkinson, 1997; Motazedian and Atkinson, 
2005; Boore, 2009), the basic principle of finite-fault modelling is to divide the fault source into 
several subfaults, where each subfault is regarded as a point source. Each point source 
radiates an elementary seismic wave. The final time series of ground motion is then obtained 
by summation of the time series generated by all subfaults, with a proper time delay between 
subfaults to parameterise the rupture evolution over the fault plane (Fig .1). 

 
Figure 1. Illustration of finite-fault modelling. A detailed description is provided in the main text. 

The Fourier amplitude spectrum (FAS) of acceleration of a point source is given by Eq. (1): 
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𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 𝐸𝐸𝑖𝑖𝑖𝑖 × 𝐺𝐺𝑖𝑖𝑖𝑖 × 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 × 𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴                                                                       (1) 

where 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 is FAS of acceleration of the 𝑖𝑖𝑖𝑖𝑡𝑡ℎ subfault; 𝐸𝐸𝑖𝑖𝑖𝑖 is the earthquake source model; 𝐺𝐺𝑖𝑖𝑖𝑖 
represents geometric spreading at distance 𝑅𝑅𝑖𝑖𝑖𝑖 ; 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖  indicates the whole path anelastic 
attenuation; 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 are the local site amplification and diminishing factor, respectively.  

The earthquake source is expressed by Eq. (2): 

𝐸𝐸𝑖𝑖𝑖𝑖 = (2𝜋𝜋𝜋𝜋)2
𝐶𝐶𝑀𝑀0𝑖𝑖𝑖𝑖

1+(𝑓𝑓 𝑓𝑓0𝑖𝑖𝑖𝑖⁄ )2
𝑆𝑆𝑖𝑖𝑖𝑖                                                                                       (2) 

where, 𝐶𝐶 is a scaling factor, given as 𝐶𝐶 =  0.55 × 2.0 × 0.707) 4𝜋𝜋𝜌𝜌0𝛽𝛽03⁄ , whereby 𝜌𝜌0 and 𝛽𝛽0 are 
density and S-wave velocity at the source; 𝑀𝑀0𝑖𝑖𝑖𝑖 , 𝑓𝑓0𝑖𝑖𝑖𝑖  and 𝑆𝑆𝑖𝑖𝑖𝑖  are seismic moment, corner 
frequency, and scaling factor for the 𝑖𝑖𝑖𝑖𝑡𝑡ℎ subfault, respectively.  

𝑀𝑀0𝑖𝑖𝑖𝑖 can be determined using Eq. (3): 

𝑀𝑀0𝑖𝑖𝑖𝑖 = 𝑀𝑀0𝑊𝑊𝑖𝑖𝑖𝑖

∑ ∑ 𝑊𝑊𝑙𝑙𝑙𝑙
𝑛𝑛𝑛𝑛
𝑤𝑤=1

𝑛𝑛𝑛𝑛
𝑙𝑙=1

                                                                                         (3) 

where 𝑀𝑀0 is the total seismic moment and 𝑊𝑊𝑖𝑖𝑖𝑖 is the relative slip weight of the 𝑖𝑖𝑖𝑖𝑡𝑡ℎ subfault; 𝑛𝑛𝑛𝑛 
and 𝑛𝑛𝑛𝑛 are the number of subfaults along strike and down dip of the finite fault, respectively. 

𝑓𝑓0𝑖𝑖𝑖𝑖 is defined by Eq. (4) (Tang, 2022a): 

𝑓𝑓0𝑖𝑖𝑖𝑖 = 4.9 × 106𝛽𝛽0 �
∆𝜎𝜎

𝑝𝑝×𝑀𝑀0
�
1/3

                                                                          (4a) 

𝑓𝑓0𝑖𝑖𝑖𝑖 = 4.2 × 106𝑦𝑦𝑦𝑦𝛽𝛽0 �
∆𝜎𝜎

𝑝𝑝×𝑀𝑀0
�
1/3

                                                                       (4b) 

in which, ∆𝜎𝜎 is dynamic stress drop, 𝑦𝑦 is the ratio between rupture velocity and shear-wave 
velocity, and 𝑧𝑧 defines the strength of high-frequency radiation and correlates with the slip 
fraction. 

In Eq. (4), 𝑝𝑝 is the parameter defining the pulsing percentage, determined by Eq. (5): 

 𝑝𝑝 = �𝑁𝑁𝑅𝑅 𝑁𝑁⁄ ,    𝑁𝑁𝑅𝑅 < 𝑁𝑁 × 𝑝𝑝𝑝𝑝 
𝑝𝑝𝑝𝑝,           𝑁𝑁𝑅𝑅 ≥ 𝑁𝑁 × 𝑝𝑝𝑝𝑝                                                                                          (5) 

where 𝑁𝑁𝑅𝑅 is the cumulative number of pulsing subfaults, and it is determined by the rupture 
area percentage (𝑝𝑝𝑝𝑝); 𝑁𝑁 is the total number of subfaults.  

𝑆𝑆𝑖𝑖𝑖𝑖 in Eq. (2), is the scaling factor introduced by Boore (2009), which is used to eliminate the 
influences of subfault size on spectral amplitude at lower frequencies due to the incoherent 
summation. 𝑆𝑆𝑖𝑖𝑖𝑖 is calculated by Eq. (6): 

𝑆𝑆𝑖𝑖𝑖𝑖 = 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
1+(𝑓𝑓 𝑓𝑓0𝑖𝑖𝑖𝑖⁄ )2

1+(𝑓𝑓 𝑓𝑓0𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⁄ )2
                                                                                     (6a) 

where  

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = √𝑁𝑁 𝐻𝐻𝑖𝑖𝑖𝑖�                                                                                                   (6b) 

𝑓𝑓0𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑓𝑓0𝑖𝑖𝑖𝑖 �𝐶𝐶𝐶𝐶𝑖𝑖𝑗𝑗⁄                                                                                            (6c) 

𝐻𝐻𝑖𝑖𝑖𝑖 in Eq. (6b) is the high-frequency scaling factor. The acceleration-based 𝐻𝐻𝑖𝑖𝑖𝑖 is expressed 
by Eq. (7a), which can be simplified as Eq. (7b) (Boore, 2009): 

𝐻𝐻𝑖𝑖𝑖𝑖 = (𝑀𝑀0 𝑀𝑀0𝑖𝑖𝑖𝑖⁄ ) × �∑( 𝑓𝑓02𝑓𝑓
𝑓𝑓02+𝑓𝑓2

)2 𝑁𝑁 ∑(
𝑓𝑓0𝑖𝑖𝑖𝑖
2 𝑓𝑓

𝑓𝑓0𝑖𝑖𝑖𝑖
2 +𝑓𝑓2

)2�                                                    (7a) 
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𝐻𝐻𝑖𝑖𝑖𝑖 = √𝑁𝑁 � 𝑓𝑓0
𝑓𝑓0𝑖𝑖𝑖𝑖

�
2
                                                                                                 (7b) 

Here, 𝑓𝑓0 is the overall corner frequency for the rupture, determined from Eq. (8) (Tang, 2022a): 

𝑓𝑓0 = 4.9 × 106𝛽𝛽0 �
∆𝜎𝜎
𝑀𝑀0
�
1/3

                                                                                     (8a) 

𝑓𝑓0 = 4.2 × 106𝑦𝑦𝑦𝑦𝛽𝛽0 �
∆𝜎𝜎
𝑀𝑀0
�
1/3

                                                                                  (8b) 

The geometrical spreading 𝐺𝐺𝑖𝑖𝑖𝑖 in Eq. (1) relates to subfault distance 𝑅𝑅𝑖𝑖𝑖𝑖 from the received, and 
accounts for the regional geometric attenuation of seismic-wave amplitudes along the wave-
propagation path.  

 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 in Eq. (1) is expressed by Eq. (9):  

𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 = exp (−𝜋𝜋𝜋𝜋𝑅𝑅𝑖𝑖𝑖𝑖
𝑄𝑄𝛽𝛽0

)                                                                                               (9) 

where 𝑄𝑄 is the regional quality factor which is inversely related to anelastic attenuation. 

𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 in Eq. (1) can be calculated by Eq. (10) and (11), respectively: 

𝐴𝐴𝐴𝐴 =  �𝜌𝜌0𝛽𝛽0
𝜌𝜌�𝑧𝑧𝛽𝛽�𝑧𝑧

                                                                                                        (10) 

where 𝜌̅𝜌𝑧𝑧  and 𝛽̅𝛽𝑧𝑧  are the time-averaged density and shear-wave velocity over the depth 
corresponding to a quarter wavelength. 

𝐴𝐴𝐴𝐴 = 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝜋𝜋𝜅𝜅0𝑓𝑓)                                                                                               (11) 

where 𝜅𝜅0 represents the spectral decay slope at high frequencies. 

The final time series of the finite-fault source can then be computed using Eq. (12): 

𝐴𝐴(𝑡𝑡) = ∑ ∑ 𝐻𝐻𝑖𝑖𝑖𝑖 × 𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡 + ∆𝑡𝑡𝑖𝑖𝑖𝑖 + ∆𝑇𝑇𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛
𝑗𝑗=1

𝑛𝑛𝑛𝑛
𝑖𝑖=1                                                             (12) 

where 𝐴𝐴(𝑡𝑡) is the total time series of the seismic signal at a site; 𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡) is the signal of the 𝑖𝑖𝑖𝑖th 
subfault, obtained from the inverse Fourier transform of 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 (Eq. 1); ∆𝑡𝑡𝑖𝑖𝑗𝑗 is the delay time of 
the 𝑖𝑖𝑖𝑖th subfault along the path; and ∆𝑇𝑇𝑖𝑖𝑖𝑖 is the delay time for 𝑖𝑖𝑖𝑖th subsource and is proportional 
to the rise time of the subfault (𝑇𝑇0𝑖𝑖𝑖𝑖). 

2.2 The GMSS code 

We use the code package GMSS2.0 that builds on EXSIM_DMB (Boore, 2009) and EXSIM_V3 
(Crane and Motazedian, 2014) and thus is an enhanced software package for stochastic finite-
fault ground motion simulation. Particularly, GMSS2.0 has the following features: 

• Every step is transparent, enabling users to check every single module and function, 
and make changes based on specific requirements.  

• Two different options are included for calculating corner frequency and rise time, 
namely rupture-velocity dependent and independent models, thus improving ground 
motion estimation at high frequencies. 

• Rupture dimensions are estimated using empirical relationships (Table 1). 

• Site-specific simulations with various site responses for different sites are possible as 
alternative options. 

• Computationally efficient with the application of parallel computing toolbox in MATLAB. 
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The workflow chart of the GMSS2.0 code/algorithm is shown in Fig. 2. 

 
           Figure 2. Workflow chart of GMSS2.0 code. 

Generally, users need to provide three types of input in the “Parameters Input” module, namely, 
(i) the general input parameters, such as the time interval (𝑑𝑑𝑑𝑑), number of simulations per 
hypocenter (𝑁𝑁𝑁𝑁), and number of hypocenters (𝑁𝑁ℎ𝑦𝑦𝑦𝑦); (ii) source parameters, such as strike and 
dip angle of the fault, stress drop (∆𝜎𝜎), corner-frequency indicator, etc; and (iii) site parameters, 
including the location of sites (longitude and latitude, or distance and azimuth), site condition 
(𝑉𝑉𝑆𝑆30  and 𝜅𝜅0), etc. For determining the rupture, GMSS2.0 provides four published source-
scaling relationships (Table 1), including ones developed for the stable continental region, 
subduction interface region, and China mainland region. 

Table 1. Rupture scaling relationship embodied in GMSS2.0. 

Relationship WC94  L10  T17 C19  

Reference Wells and Coppersmith 
(1994) Leonard (2010) Thingbaijam et al. (2017) Cheng et al. (2019) 

Normal 𝐹𝐹𝐹𝐹 = 10−1.88+0.50𝑀𝑀 
𝐹𝐹𝐹𝐹 = 10−1.14+0.35𝑀𝑀 

𝐹𝐹𝐹𝐹 = 10−2.54+0.60𝑀𝑀 
𝐹𝐹𝐹𝐹 = 10−1.46+0.40𝑀𝑀 

𝐹𝐹𝐹𝐹 = 10−1.722+0.485𝑀𝑀 
𝐹𝐹𝐹𝐹 = 10−0.829+0.323𝑀𝑀 

𝐹𝐹𝐹𝐹 = 10−4.02+0.83𝑀𝑀 
𝐹𝐹𝐹𝐹 = 10−2.13+0.51𝑀𝑀 

Reverse 𝐹𝐹𝐹𝐹 = 10−2.42+0.58𝑀𝑀 
𝐹𝐹𝐹𝐹 = 10−1.61+0.41𝑀𝑀 

𝐹𝐹𝐹𝐹 = 10−2.54+0.60𝑀𝑀 
𝐹𝐹𝐹𝐹 = 10−1.46+0.40𝑀𝑀 

𝐹𝐹𝐹𝐹 = 10−2.693+0.614𝑀𝑀 
𝐹𝐹𝐹𝐹 = 10−1.669+0.435𝑀𝑀 

𝐹𝐹𝐹𝐹 = 10−3.27+0.72𝑀𝑀 
𝐹𝐹𝐹𝐹 = 10−1.67+0.44𝑀𝑀 

Strike-slip 𝐹𝐹𝐹𝐹 = 10−2.57+0.62𝑀𝑀 
𝐹𝐹𝐹𝐹 = 10−0.76+0.27𝑀𝑀 

𝐹𝐹𝐹𝐹 = 10−2.50+0.60𝑀𝑀 
𝐹𝐹𝐹𝐹 = 10−1.49+0.40𝑀𝑀 

𝐹𝐹𝐹𝐹 = 10−2.943+0.681𝑀𝑀 
𝐹𝐹𝐹𝐹 = 10−0.543+0.261𝑀𝑀 

𝐹𝐹𝐹𝐹 = 10−2.45+0.61𝑀𝑀 
𝐹𝐹𝐹𝐹 = 10−1.38+0.41𝑀𝑀 

Undefined 𝐹𝐹𝐹𝐹 = 10−2.44+0.59𝑀𝑀 
𝐹𝐹𝐹𝐹 = 10−1.01+0.32𝑀𝑀 

*𝐹𝐹𝐹𝐹 = 10−2.59+0.60𝑀𝑀 
*𝐹𝐹𝐹𝐹 = 10−1.60+0.40𝑀𝑀 

†𝐹𝐹𝐹𝐹 = 10−2.412+0.583𝑀𝑀 
†𝐹𝐹𝐹𝐹 = 10−0.88+0.366𝑀𝑀 

𝐹𝐹𝐹𝐹 = 10−2.67+0.63𝑀𝑀 
𝐹𝐹𝐹𝐹 = 10−1.38+0.40𝑀𝑀 

(Note: 𝐹𝐹𝐹𝐹 and 𝐹𝐹𝐹𝐹 are the fault length and width respectively; 𝑀𝑀 is the moment magnitude; 𝐹𝐹𝐹𝐹 in L10 is obtained using the 
correlation between fault area and 𝐹𝐹𝐹𝐹, assuming the fault is rectangular; 𝐹𝐹𝐹𝐹  in Cea19 is obtained using the correlation 
between 𝐹𝐹𝐹𝐹 and 𝐹𝐹𝐹𝐹. The unit for 𝐹𝐹𝐹𝐹 and 𝐹𝐹𝐹𝐹 is km in this study; “*” means this scaling relationship is specifically for Stable 
Continental Region; “†” means this scaling relationship is specifically for Subduction Interface) 

Considering the variations in engineering demands, GMSS2.0 computes seven different 
distances in the distance matrices, including 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟  (closet distance to fault rupture) and 𝑅𝑅𝑗𝑗𝑗𝑗 
(closet distance to the surface projection of fault rupture). The procedures in the box marked 
red in Fig.3 are the simulation procedures for a single subfault, following stochastic point-
source simulation procedures (Boore, 2003; Tang, et al. 2021). The procedures in the blue box 
define the additional steps for finite-fault simulations in which the time series of each subfault 
are summed with proper time delays. The final simulation outputs provided by GMSS2.0 
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include the time series of one or several random simulations, averaged intensities (i.e., PGA, 
PGV, PGD, IA (Arias intensity), CAV (Cumulative Absolute Velocity), PSA and duration), 
averaged FAS, Husid plot, and more. Further information can be found in Tang (2022b). The 
user manual and source code are available at https://github.com/Y-Tang99/GMSS2.0. 

3 Simulation of the 2021 Mw5.9 Woods Point Earthquake 
For better ground motion characterisation (GMC) and seismic hazard assessment purposes, 
we perform stochastic finite-fault simulations of ground motions recorded by 36 stations using 
the GMSS2.0 code. The raw data have been processed as follows: 

• Bandpass filter seismic records, using a 4th order acausal Butterworth filter with a 
frequency range of 0.05 Hz and variable high-frequency cut-off that varies due to 
station-dependent instrument sampling rate. 

• Remove instrument response using station XML files generated by Obspy 
(https://docs.obspy.org/tutorial/code_snippets/stationxml_file_from_scratch.html). 

• Determine signal-to-noise ratio (SNR) for each station at 20 frequencies of interest for 
all 3 components; discard observations with low SNR (i.e., SNR < 5.0). 

• Smooth the FAS using the window proposed by Katsuaki and Ohmachi (1998). 

We determine the parameter values for simulations by regression analysis of FAS at 20 
discrete frequencies ranging from 0.1 Hz to 20 Hz. The site amplification model follows Seyhan 
and Stewart (2014), but the linear term (VS30-scaling) coefficient is modified from the local VS30 
values of the 36 stations, while the nonlinear term is computed using the local PGA values on 
the reference rock site with VS30 = 760 m/s. Geometric spreading and anelastic attenuation are 
determined using the functional format proposed by Boore et al. (2009), where we adopt a bi-
linear geometric spreading, and a bilinear Q factor (when plotted in log-log format). The source 
duration is determined as 0.27 𝑓𝑓0⁄  (Tang, 2022a) while the path duration was determined 
following Boore and Thompson (2014). The source parameters, including the seismic moment 
and corner frequency, are determined by matching the theoretical Brune model of the Fourier 
displacement spectrum (Brune, 1970) with the reference spectrum obtained from the 
regression. Finally, the dynamic stress drop value is determined by minimizing the absolute 
residual value of 5%-damped PSA between observations and simulations over all distance and 
frequency ranges.  

The geographical locations of stations selected for this study are shown in Fig. 3. Simulation 
results are displayed in Fig. 4, and the corresponding residuals are given in Fig. 5. 
Comparisons of 5%-damped PSA with six GMMs (listed in Table 2) are shown in Fig. 6. 

The simulations in Fig. 4 are site-specific with various VS30 values, indicating that the simulated 
PSA’s generally match the observations for the hypocentral distance range 67.6 km (CLIF 
station) to 439.1 km (AUUHS) and for spectral periods ranging from 0.05 s to 3.0 s (note that 
station CNB, only the range 0.08 s to 3.0 s was usable due to low sampling rate). The mean 
residual between simulations and observations over all distances over the spectral periods of 
interest is shown in Fig. 5. The average residual is very close to 0, indicating that the input 
parameters have been well calibrated for this event based on the available data. 

https://github.com/Y-Tang99/GMSS2.0
https://docs.obspy.org/tutorial/code_snippets/stationxml_file_from_scratch.html
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Figure 3. Selected stations in this study (different size of the symbol indicates the PGA value recorded 
by the station). 

 
Figure 4. Comparison of simulated 5%-damped pseudo-spectral acceleration (PSA) and observations 
for nine stations. Observations are given as the geometric mean of the two horizontal components. 
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(a) 

 

(b) 

 

Figure 5. Overall residuals between simulations and observations of 5%-damped PSA, (a) Residuals 
with respect to distance (the black square indicates the average residual over various distance bins; the 
corresponding central distances for each bin are 72.63, 99.19, 117.83, 126.31, 149.20, 198.44, 275.34, 
349.30 and 401.35 km; 𝜎𝜎 indicates the standard deviation of each distance bin); (b) Residuals with 
respect to natural periods between 0.05 – 3.0 s, the green shaded area marks the 90% confidence 
interval.  𝛿𝛿 indicates the average residual, and 𝜎𝜎 represents the standard deviation. Observations are 
given as the geometric mean of the two horizontal components. 

 

In terms of ground-motion models (GMM), the AB06 model is a typical GMM developed for 
Central Eastern North America (CENA) but also applied in other stable continental regions 
(Atkinson and Boore, 2006). The Sea09 model is simulation-based, and we only consider the 
non-cratonic condition in this study (Somerville, et al., 2009). The A12 model is a GMM 
specifically developed for South-eastern Australia (SEA) (Allen 2012). The Bea14 model is an 
NGA-West2 model which is mainly for active tectonic regions (Boore et al., 2014). The Gea18 
model is a comprehensive averaged GMM that considers 17 different models with different 
weights at different spectral periods and is typically applied in stable continental regions 
(Goulet et al. 2018). The Tea20 model is a regionally adjustable GMM developed for intraplate 
events (Tang et al., 2020). All GMMs are adjusted to the average site condition VS30 = 725.1 
m/s. 

Table 2. Selected GMMs in this study 

No. GMM Region Type Distance Reference 
VS30 (m/s) Reference 

1 AB06 CENA Semi-simulated  
(Finite-fault source) 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 760 Atkinson and Boore (2006) 

2 Sea09 Australia Simulated 
(broadband) 𝑅𝑅𝐽𝐽𝐽𝐽 865 Somerville et al. (2009) 

3 A12 SEA Semi-simulated  
(Finite-fault source) 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 820 Allen (2012) 

4 Bea14 Crustal 
active  Empirical 𝑅𝑅𝐽𝐽𝐽𝐽 760 Boore et al. (2014) 

5 Gea18 CENA Combined 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 3000 Goulet et al. (2018) 

6 Tea20 Regionally 
adjustable 

Semi-simulated  
(Point source) 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 760 Tang et al. (2019, 2020) 



 

AEES 2022 National Conference, Nov 24 - 25 9 

 
Figure 6. Comparison of 5%-damped pseudo-spectral acceleration (PSA) and six GMMs at four spectral 
periods. The bound between dashed lines indicates the acceptance range defined by the GMMs (Goulet 
et al., 2015). The GMMs have been adjusted to the average site with VS30 = 725.1 m/s. 

 

Next., we discuss the comparisons between GMM-predictions and our simulations for 5%-
damped PSA for four spectral periods (Fig. 6). We find that the simulated PSA values generally 
match the observations and lie within the acceptance range of the selected GMMs. The 
acceptance range is defined as the range between the upper and lower bounds of the selected 
GMMs. The largest GMM prediction from all models at any period is selected as a reference 
point, to which 15% is added (this number is selected based on judgment to increase the 
allowable range, pp. 25 in Goulet et al. (2015)). The upper-bound spectrum is then defined by 
applying the ratio of the reference point to the average spectrum. The lower-bound spectrum 
is obtained from the same process (Goulet et al., 2015). This indicates our simulation results 
are acceptable. Generally, the performance of the GMMs is better at shorter periods and closer 
distances. As observed by Hoult et al. (2021), the local GMMs (Sea09, A12, and Tea20) 
perform better and generally reflect the ground motion attenuation characteristics of this event. 
The AB06 model appears to underestimate ground motions for distances less than 150 km 
and overestimates at distances above 150 km. In contrast, the Gea18 model overestimates 
ground motions for the entire distance range considered in the study.  

Our result may be a reference to inspecting the overall performance of the CENA models for 
predicting the Australian ground motions. Because there are no recordings at short distances 
for this event, it is currently impossible to judge their performance at close distances, even 
though Allen and Atkinson (2007) found that the attenuation properties between SEA and 
CENA are similar at short distances. The Bea14 model (for active tectonic regions) leads to 
underestimates at short periods, which is also shown in Hoult et al. (2021).  
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4 Closing Remarks 
This study analyses synthetic and observed ground motions of the 2021 Mw5.9 Woods Point 
earthquake, using the recently introduced ground-motion simulation code GMSS2.0. This 
software package implements stochastic finite-fault ground motions in low-to-moderate 
seismicity regions where instrument observations are scarce. We describe the basic principles 
and features of GMSS2.0 and then apply the code to simulate the ground motions of the 2021 
Mw5.9 Woods Point earthquake. We achieve good agreement between simulations and field 
observations, with the input parameters determined from 36 selected stations. We also 
compared our simulations with six GMMs considered in the NSHA program; the results show 
that the simulated ground motions are within the acceptance range defined by the GMMs.  
In a follow-up study, we will generate a large simulation-based dataset at a wide distance range 
with varying source, path, and site parameters to conduct a detailed sensitivity analysis. The 
corresponding results will facilitate future work on regional PSHA in the context of ground 
motion characterisation over a wide distance range in the absence of observational data. 
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