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ABSTRACT: 

Many reinforced concrete buildings in Australia are laterally supported by reinforced 

concrete cores/shear walls that are eccentrically located in the buildings. The structural 

elements at the edges of the asymmetrical buildings can be subjected to a significant 

displacement demand, making this type of buildings highly vulnerable in an earthquake. 

Seismic assessment methods for asymmetrical buildings commonly involve 

three-dimensional dynamic analyses that can be computationally expensive. This paper 

presents a simplified analysis method for multi-storey buildings featuring plan asymmetry. 

The method has been used to assess the seismic vulnerability of asymmetrical reinforced 

concrete buildings in Australia.     
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1 INTRODUCTION 

Reinforced concrete buildings make up the majority of Australian’s building stocks. The 

buildings are commonly designed with little to no considerations of ductile detailing and 

often feature vertical and/or plan irregularities. Seismic design guidelines and assessment 

procedures (e.g., Eurocode 8 (EN 1998-1, 2004), AS 1170.4-2007 Commentary (Standards 

Australia, 2009), FEMA 450-1 (Building Seismic Safety Council, 2003), FEMA 356 (ASCE, 

2000)) require dynamic analyses to be performed on such structures. However, modelling of 

irregular buildings is complex and requires expert judgment. There are also currently no 

consistent guidelines on the selection of ground motion inputs for the analyses. 

The authors have recently developed a simple and accurate method (referred to as the 

Generalised Lateral Force Method) for the analysis of multi-storey buildings (Mehdipanah et 

al., 2016). The method has been shown to be able to provide estimates of the displacement 

demand on multi-storey buildings less than 30 m in height. The robustness of the method has 

been demonstrated on multi-storey buildings featuring vertical irregularities that are caused 

by discontinuities in the gravitational load carrying elements. 

In this paper, the method has been extended to account for the effects of torsion caused by 

plan asymmetry. Dynamic analyses can be computationally expensive especially as far as 

three-dimensional dynamic analysis is concerned and hence the developed method will 

provide significant time savings in the seismic assessment of this type of buildings. The 

dynamic torsional behaviour has been the subject of research since the 1980s (e.g., Dempsey 

and Tso, 1982; Chandler and Hutchinson, 1988; Rutenberg and Pekau, 1987; Chopra and 

Goel, 1991; Tso and Zhu, 1992; Chandler and Duan, 1997). However, many of the findings 

of these studies are contradictory as they are largely dependent on the building models, 

parameters and assumptions adopted in the studies. 

The method introduced in this paper is aimed at approximating results of dynamic analyses 

required by current codes of practice (e.g., AS1170.4-2007 (Standards Australia, 2007); 

Eurocode 8 (EN 1998-1, 2004)) assuming linear elastic behaviour. The displacement 

demands on the buildings can be estimated by applying the behaviour factor, or structural 

modification factor, in accordance with the codes. The developed method is introduced in 

Sections 2 and 3. Section 2 presents expressions that can be used to provide estimates of 

displacement at the edges of torsionally unbalanced (TU) buildings developed based on a 

single-storey building model. The expressions presented in Section 2 requires multi-storey 

buildings to be idealised into a single-storey building model. A method to obtain the idealised 

single-storey building model is presented in Section 3. The developed method has been 

verified by comparison with dynamic analysis results of two case study reinforced concrete 

buildings in Section 4. The method has been used to construct fragility curves for the two 

case study buildings in Section 5.   

2 EDGE DISPLACEMENT OF TORSIONALLY UNBALANCED (TU) BUILDINGS 

Estimates of the maximum displacement demand at the edges of TU buildings have been 

derived based on a single-storey building model with uni-axial asymmetry (Figure 1). The 

single-storey building model has been shown to be able to represent the torsional behaviour 

of multi-storey TU buildings (Anagnostopoulos et al., 2015; Lam et al., 1997). 

The torsional response behaviour of a TU building is governed by a few parameters: i) e is 

the eccentricity; ii) Kx is the translational stiffness of the TU building; iii) K is the torsional 

stiffness of the TU building; iii) m is the mass of the TU building; iv) J is the torsional mass 
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of inertia of the TU building (= 𝑚𝑟2), where r is the mass radius of gyration. Parameter “b” 

(= √𝐾𝜃 𝐾𝑥⁄ ) is used to represent the torsional stiffness properties of the TU building.   

 

Figure 1 Uni-axial asymmetry single-storey building model 

The maximum displacement demand at the edges of the TU building can be obtained by 

using dynamic modal analyses if linear elastic behaviour is assumed. The dynamic 

equilibrium for a uni-axial asymmetry single-storey building is provided by Equation (1): 
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where, 𝑥𝑟̈ and 𝑥𝑟 are the translational acceleration and displacement, respectively, normalised 

with respect to the mass radius of gyration r, 𝜃̈ and 𝜃 are the rotational acceleration and 

displacement respectively, 𝜔𝑥 is the translational natural angular velocity of the uncoupled 

mode of vibration and Ω𝑗 is the natural angular velocity of the coupled modes of vibration.  

Letting  𝜆𝑗
2 =

Ω𝑗
2

ω𝑗
2 , the eigenvalue solution for Equation (1b) is given by: 

𝜆𝑗
2 =

1+(𝑏𝑟
2+𝑒𝑟

2)

2
± √[

1−(𝑏𝑟
2+𝑒𝑟

2)

2
]

2

+ 𝑒𝑟
2  (2) 

The dynamic equation equilibrium (Eq. (1b)) has two eigenvalues solution. 𝜆1 defines the 

first coupled natural angular velocity and is smaller than 1.0, 𝜆2 defines the second coupled 

natural angular velocity and is larger than 1.0. 

The eigenvector solution for Equation (1b) is given by: 
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where, 𝑥𝑟 = 𝑥/𝑟 and  𝑒𝑟 = 𝑒/𝑟. 

Based on the eigenvalue and eigenvector solutions provided by Equations (2) and (3) and 

using the square-root-of-the-sum-of-the-square (SRSS) combination rule, the maximum 

displacement at the center of mass (CM) and center of rigidity (CR) positions and at the 

edges of the building (Figure 1) are provided by Equation (4). The SRSS combination rule 

has been shown to be able to provide reasonably accurate estimates of the maximum 

displacement demand of TU buildings (Lumantarna et al., 2013).  
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𝑥𝐶𝑅(max) = √∑ 𝜆𝑗
2 1
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where, 𝑥𝐶𝑀 is the maximum displacement at the CM of the building,  𝑥𝐶𝑅 is the maximum 

displacement at the CR of the building, 𝑥+𝐵 is the maximum displacement at the stiff edge of 

the building (Fig. 2a) and 𝑥−𝐵 is the maximum displacement at the flexible edge of the 

building (Fig. 2b). 𝑅𝑆𝐷(𝑇𝑗 , 𝜉) is the response spectral displacement value at the coupled 

modal period 𝑇𝑗 of the building.  

The maximum displacement of the TU building can be presented in the form of displacement 

ratio (Δ Δ𝑜)⁄ .  is the maximum displacement of the TU building at the edges and o is the 

maximum displacement of the equivalent torsionally balanced (TB) building, the TB building 

which possesses translational stiffness equal to the translational stiffness of the TU building. 

The displacement can be represented by the response spectral displacement RSD(T,) at the 

uncoupled modal period (T) of the TU building. The displacement ratio is defined for the 

acceleration, velocity and displacement controlled conditions (presented schematically in 

Figure 2) by Equations (5):    
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for the acceleration-controlled conditions,  
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for the velocity-controlled conditions, and 
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for the displacement-controlled conditions. 

 

Figure 2 Displacement response spectrum featuring acceleration-, velocity- and displacement-controlled regions 

3 IDEALISATION OF A 3-D TU BUILDING INTO A SINGLE STOREY 

BUILDING MODEL 

The torsional behaviour of TU buildings can be represented by single-storey building models 

with similar torsional properties (represented by eccentricity (e) and torsional stiffness 
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parameter (b)). Multi-storey buildings often feature discontinuities in their lateral and/or 

gravitational load carrying elements and consequently there can be a lot of variation in the 

mass, storey eccentricity and torsional stiffness values of the individual floors. A method to 

determine the values of e and b for the multi-storey building is presented in this section. 

First, lateral load is applied at the center of mass (CM) of each floor as schematically shown 

in Figure 3a. The magnitude of the lateral load can be determined in accordance with seismic 

codes (e.g., AS1170.4-2007 (Standards Australia, 2007); Eurocode 8 (CEN, 2004)). The 

effective displacement of the multi-storey building model can be determined using Equation 

(6). 

𝛿𝑒𝑓𝑓 =
∑ 𝑚𝑖𝛿𝑖

2

∑ 𝑚𝑖𝛿𝑖
  (6) 

where, mi and i are the mass and displacement of floor i, respectively. 

The maximum displacement () and the rotation of the building (𝜙) as schematically shown 

in Figure 3b can be obtained based on the effective displacement at the edges of the building. 

    

   (a) three-dimensional view of the TU building model  (b) plan view of the TU building model 

Figure 3 Applying lateral load at the CM of the TU building  

 

Second, the lateral load is applied at an arbitrary location which is further away from the CM 

of the building (the load is shown to be applied at 0.05 of the building width (2B) from the 

CM in Figure 4a). The maximum displacement (2) and the rotation of the building (𝜙2) 

(shown in Figure 4b) caused by the imposed lateral load can be obtained based on the 

effective displacement at the edges of the building. 

            

   (a) three-dimensional view of the TU building model  (b) plan view of the TU building model 

Figure 4 Applying lateral load at an arbitrary point further away from the CM of the TU building 
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The CR of a building is a location on the building at which the lateral load applied will only 

result in translational displacement of the building ( = 0).   Based on the values of  and 2 

the value of eccentricity e can be found by extrapolation as schematically shown in Figure 5. 

Similarly, based on the values of , 2 and e the value of the translational displacement (o) 

can be found by extrapolation (shown schematically in Figure 6).  

The torsional stiffness parameter 𝑏𝑟 (normalised with respect to the radius gyration of the 

building (r)) can be obtained from the relationship between the displacement edge ratio and 

the torsional parameters when a static load is applied at the CM of the building:  

∆

∆𝑜
= 1 +

𝑒𝑟

𝑏𝑟
2 𝐵𝑟  (7a) 

where, ∆ is the maximum displacement of the TU building subject to a static load applied at 

the CM (∆ is equal to 𝛿 shown in Figure 3b), ∆𝑜 is the translational displacement, er and br 

are the eccentricity and torsional stiffness parameter, respectively, normalised with respect to 

the radius of gyration of the building (r). Br is half of the width of the building (Figure 3a) 

normalised with respect to the radius of gyration of the building.  

The torsional stiffness parameter 𝑏𝑟 can be found by re-arranging Equation (7a): 

𝑏𝑟 = √
𝑒𝑟 𝐵𝑟

(
∆

∆𝑜
−1)

  (7b) 

        

Figure 5 Finding the CR of the building    Figure 6 Finding the translational displacement (o) 

 

4 COMPARISON WITH THE DYNAMIC ANALYSES OF CASE STUDY 

BUILDINGS 

Three-dimensional dynamic analyses have been performed using program ETABS 

(Computer & Structures Inc. 2013) on a number of multi-storey building models to verify 

predictions based on the proposed method presented in Sections 2 and 3. Results of dynamic 

analyses on two buildings are presented in this section. The buildings are laterally supported 

by moment resisting frames and reinforced concrete shear walls. Some of the columns in the 

moment resisting frames of the buildings were discontinuous, resulting in vertical 

irregularities in the buildings.  Figures 7 and 8 present typical plan views of the buildings. 

The three-dimensional views of the building models are presented in Figures 9 and 10. The 

height of the buildings was 28 m and 21.2 m, for buildings 1 and 2, respectively. The mass 

radius of gyration of the buildings was 18 m and 16 m, for buildings 1 and 2, respectively. 

The geometric and material properties of the elements of the buildings are summarised in 

Table 1. The mass and er values of the individual floors are listed in Table 2. 
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(a) ground floor 

 
(b) floor 1 to 4 

 
(c) floor 5 to roof 

Figure 7 Plan view of Building 1 

 
(a) typical floor 

Figure 8 Plan views of Building 2 
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(b) floor 2 

Figure 8 cont’d 

 

Figure 9 3-D view of Building 1 

 

Figure 10 3-D view of Building 2 

Table 1 Dimensions of principal structural elements and material properties (mm) 

(a) Building 1 

Element Slab Walls Beams Columns 

Type  Core Shear Standard Transfer A B C D 

Material RC RC RC RC RC RC RC RC RC 

Width (mm) - 200 200 280 280 375 280 400 300 

Depth (mm) 250 - - 620 1000 810 610 400 300 

Length 

(mm) 

-     - -        
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 (b) Building 2 

Element Slab Walls Beams Columns 

Type  Core Shear Standard Transfer A B 

Material RC RC RC RC RC RC RC 

Width (mm) - 200 200 280 300 350 300 

Depth (mm) 250 - - 450 1600 350 300 

Length 

(mm) 

-     - -    

RC – reinforced concrete with modulus of elasticity of  24.5 GPa and density of 2500 kg/m3 

 

Table 2 Storey mass, eccentricity and torsional stiffness of the building 

(a) Building 1 

Level Storey mass (t) Eccentricity 

er 

x-direction y-direction 

1 755 -0.07 0.14 

2 738 -0.02 0.31 

3 738 0.02 0.44 

4 751 0.06 0.53 

5 719 0.08 0.60 

6 719 0.10 0.64 

7 719 0.11 0.67 

Roof 684 0.12 0.70 

(b) Building 2 

Level Storey mass (t) Eccentricity 

er 

x-direction y-direction 

1 1244 0 0.96 

2 1228 0 0.95 

3 1204 0 0.92 

4 1198 0 0.91 

5 1198 0 0.89 

roof 1152 0 0.90 

 

The dynamic analyses were conducted based on the design response spectrum in accordance 

with AS1170.4-2007 (Standards Australia, 2007) for site class C. The kp Z value of 0.08g was 

adopted in the analyses. Results of the analyses are presented in the form of maximum 

deflection at the edges of the buildings in Figure 11. The maximum deflection values at the 

edges of the TU buildings were compared with the translational deflection of the equivalent 

TB buildings. It is shown that the variation in the storey er values do not have significant 

effects on the displacement shapes of the buildings. Despite the variation in the er values, the 

displacement shape of the TU buildings were shown to be similar to that of a TB building. 

The method introduced in Sections 2 and 3 were used to provide estimates of the 

displacement response of the TU buildings. Lateral load in accordance with AS1170.4-2007 

(Standards Australia, 2007) was applied at the CM and a point further away from the CM to 

determine the er values of the TU buildings. The buildings were assumed to be constructed on 

a class C site in Melbourne (kpZ = 0.08). The er values of the idealised single-storey building 

models in the direction of the earthquake ground motion were found to be 0.67 and 0.88, for 

buildings 1 and 2, respectively. The eccentricity of the buildings in the direction 

perpendicular to the earthquake ground motion was small and ignored in this study. Based on 

the er values for the building models, Equation 7(b) was used to determine the br values. As 

the fundamental periods of both buildings are in the velocity-controlled range of the response 

spectrum, Equations (2), (3) and 5(b) were used to calculate the displacement ratio for the 
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stiff and flexible edges of the buildings. The eccentricity er, torsional stiffness parameters br 

and the displacement ratio (/o) for both buildings are summarised in Table 3. 

  
  (a) Building 1     (b) Building 2 

Figure 11 Displacement of TU buildings 

 

Table 3 Eccentricity, torsional stiffness parameter and displacement ratio of the buildings 

   /o 

Building er br Flexible edge Stiff edge 

Building 1 0.67 1.35 1.73 0.66 

Building 2 0.88 0.60 2.82 0.84 

 

The maximum displacement at the edges of the TU buildings can be estimated by multiplying 

the displacement ratio with the translational displacement values of the TU buildings. The 

translational displacement values of the buildings were obtained using the Generalised 

Lateral Force Method introduced by the authors (Mehdipanah et al., 2016). The maximum 

displacement values at the edges of the TU buildings estimated using the proposed method 

(referred to as the Generalised Lateral Force Method herein) is plotted against the results 

from dynamic analyses in Figure 12. The displacement demands are also plotted in the form 

of inter-storey drift ratio (((i+1i)/hi) in Figure 13. Slightly larger discrepancies were 

observed for Building 2. The displacement demands of torsionally flexible buildings (br <1.0) 

in the acceleration and velocity-controlled range were shown to be dependent on the 

eccentricity and torsional stiffness parameter (Lam et al., 2016). The displacement demands 

of Building 2 are more sensitive to variations in the values of eccentricity and torsional 

parameters between the floors. Nevertheless it is shown that the method provides reasonable 

estimates of the displacement demand of the TU buildings. 

     
(a) Building 1    (b) Building 2 

Figure 12 Displacements at the edges of TU buildings 
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(a) Building 1    (b) Building 2 

Figure 13 Inter-storey drift at the edges of TU buildings 

5 FRAGILITY CURVES FOR THE TU BUILDINGS 

Fragility curves representing the probability of the slight and moderated damage levels being 

exceeded were constructed. The curves were assumed to take the form of lognormal 

cumulative distribution function defined by Equation (8). 

𝑃(𝐷𝑆 ≥ 𝑑𝑠𝑖|𝑘𝑝𝑍) = 𝜑 (
ln(𝑘𝑝𝑍)−ln(𝑘𝑝𝑍̅̅ ̅̅ ̅̅ ) 

𝛽
)  (8) 

where, 𝑃(𝐷𝑆 ≥ 𝑑𝑠𝑖|𝑘𝑝𝑍) is the probability of a ground motion with a certain level of kpZ 

causing a damage level of dsi to be exceeded, 𝑘𝑝𝑍̅̅ ̅̅ ̅ is the level of kpZ that has 50% chance to 

cause the damage level to be exceeded and  𝛽 is the standard deviation of the lognormal 

function. 

The definition of damage levels and the associated inter-storey drift limits presented in Tsang 

et al. (2016) were adopted in the study. The parameter kpZ, where kp is the probability factor 

for the annual probability of exceedance and Z is the hazard factor, was adopted as the 

ground motion intensity measure. The parameter kpZ can be easily correlated with the 

maximum values of response spectral velocity and was selected in view of the range of the 

fundamental periods of the buildings that are within the velocity controlled range of the 

design response spectrum. The Generalised Lateral Force Method described in Sections 2 and 

3 was used to determine the 𝑘𝑝𝑍̅̅ ̅̅ ̅ values for the fragility curves. The method which is based 

on linear elastic behaviour was applied for the analysis of the buildings using the equal 

displacement principle (Velestos and Newmark, 1960). 

The standard deviation 𝛽 of the lognormal function is a combination of the total modelling 

dispersion 𝛽𝑀 and the total dispersion associated with record-to-record variability𝛽𝐷. The 

𝛽𝑀value of 0.25 was adopted in the study in accordance with FEMA P-58 (ATC, 2012). The 

𝛽𝐷 value of 0.3 was adopted based on an earlier study conducted by the authors (Mehdipanah 

et al., 2016).  

The fragility curves constructed for the TU buildings constructed on site class C are presented 

in Figures 14 and 15. The fragility curves for the equivalent TB building are also presented 

for comparison. It is shown in the figures that plan asymmetry in the buildings can results in 

significant increase in the probability of damage of the buildings. The probability of damage 

is also shown to be dependent on the torsional properties of the buildings. Further studies are 

currently being conducted to construct fragility curves for the TU buildings that represent the 

probability of the extensive and complete damage limit states being exceeded. 
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(a)  slight damage-0.5%        (b) moderate damage-1.5% 

Figure 14 Fragility curves for Building 1 

  

 (a)   slight damage-0.5%         (b) moderate damage-1.5% 

Figure 15 Fragility curves for building 2 

6 CONCLUDING REMARKS 

Many of reinforced concrete buildings in Australia feature plan asymmetry. When the center 

of mass does not coincide with the center of rigidity of the buildings, the displacement 

demand imposed on the buildings can be highly amplified, increasing their vulnerability in an 

earthquake.  

This paper introduces a method, referred to herein as the Generalised Lateral Force Method, 

to provide estimates of displacement demand at the edges of multi-storey buildings featuring 

plan asymmetry. The method is an extension of a method previously developed by the 

authors for the analysis of multi-storey torsionally balanced buildings. The Generalised 

Lateral Force Method can provide significant time savings in the modelling and analysis of 

asymmetrical buildings. 

The method has been verified by comparison with results from dynamic analyses of two 

reinforced concrete buildings featuring plan asymmetry. Fragility curves have been 

constructed for the two case study buildings.   
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