
Simulation of drift capacity for RC walls with different section 
configurations 

Susumu Kono, Taku Obara, Rafik Taleb and Hidekazu Watanabe 

Tokyo Institute of Technology, Yokohama, Japan 

Masanori Tani 

Kyoto University, Kyoto, Japan 

Masanobu Sakashita 

Building Research Institute, Tsukuba, Japan 

ABSTRACT: A series of experimental studies were conducted on reinforced concrete 
walls last several years in Japan in order to study compression controlled flexural failure 
which was observed in the 2010 Chile earthquake and the 2011 Christchurch earthquake. 
This paper numerically simulates the ultimate drift capacities of RC walls by using twenty-
four reinforced concrete wall specimens from these experimental studies. A simple fiber 
based analysis combined with Beyer’s shear drift model is able to provide loads and drifts 
of ultimate points by choosing a proper set of equivalent plastic hinge length (݈௣) and the 
limit strain of confining reinforcement (ߝ௠). This study shows that various combinations 
of ݈௣ and ߝ௠ provide good results with similar errors. 

1 INTRODUCTION 

Many RC walls suffered compression controlled flexural failures due to crushing of concrete or buckling 
and fracture of longitudinal reinforcement at boundary regions in the 2010 Chile Off-Maule Earthquake 
and 2011 Christchurch Earthquake (AIJ 2012). Based on damage observations in two earthquakes, the 
engineering society strongly felt that it is necessary to evaluate the ultimate drift capacity and failure 
mode of RC walls with higher accuracy. 

Twenty-four RC wall specimens (Kono et al. 2014, Kabeyasawa et al. 2014, Takahashi et al. 2013, 
Ogura et al. 2014) were chosen to study their ultimate drift capacities using a simple fiber based analysis. 
Fiber based analyses have been frequently conducted by many researchers (for example Pugh et al. 
2014) to provide a simple design tool for practicing engineers. One of the advantages of fiber based 
analyses is the simplicity and stability although it is not very easy to properly determine equivalent 
plastic hinge length and no-flexural drift components such as shear and pull-out drift components (Aaleti 
et al. 2014, Beyer et al. 2011). Some advanced codes consider the shear - flexure interaction (Martinelli 
2011) or even shear - flexure - axial interaction (Mostafaei and Kabeyasawa 2008). 

This study compares simulated ultimate drift capacities to experimental results to validate a fiber based 
analysis for better understanding the seismic performance and preventing collapse of reinforced concrete 
walls. 

2 EXPERIMENTAL PROGRAM 

Twenty-four specimens in Table 1 were used in the numerical study since the authors have full or partial 
access to dimensions, fabrication procedures, and the loading data. 
・ Flexural yielding was designed to proceed flexural or shear failure for all specimens except #15 (NSW2). 

NSW2 failed in shear before reaching flexural yielding but other specimens had flexural yielding followed 
by ultimate flexure or shear failure. Observed failure modes are listed in the table. 

・ Five specimens from #20 through #24 were asymmetric (AS.) and the other specimens were symmetric. 
Three representative sections are listed in Figure 1.They are a symmetric barbell section and a symmetric 
rectangular section with boundary regions (Kono et al. 2014). Figure 1(c) shows that the right edge of an 
asymmetric section had tie confinement (Takahashi et al. 2013). 
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Table 1: Major properties and variables of wall specimens. 

 

*1: References are listed.  *2: Observed failure modes are listed. F: flexural failure. S: Shear failure. F+S: Shear failure after flexural yielding. 

*3: “Rec.” represents rectangular section.  “AS.” represents asymmetric section, otherwise sections are symmetric. Five specimens from #15 

through #18 are listed as “AS Barbell” or “AS Rec.” by looking at the weaker side. *4: ݓܮ and ܪ denotes external wall length and height of 

wall panel, respectively. *5: Volume ratio of confining reinforcement is computed for core concrete. The size of core concrete is defined by 

center to center distance of confining reinforcement.*6: NSW1, 2, 3 and 4 are lightly reinforced walls without confined end region. *7: Values 

are based on cylinder compression tests. *8: Values are computed based on the gross area of columns and a wall panel. *9: Height of 

contraflexure point is divided by ݓܮ (external wall length). 

 

 

(a) Symmetric barbell section           (b) Symmetric rectangular section               (c) Asymmetric section 
Figure 1: Plan view of three representative specimens (Unit: mm).  

3 NUMERICAL SIMULATIONS OF TEST RESULTS 

3.1 Basic concept of modelling 

The ultimate drift ratio (ܴ௨) is computed by summing the flexural drift component, ܴ௨௙, and the shear 
drift component, ܴ௨௦, as Eq. (1). 

 

ܴ௨ ൌ ܴ௨௙ ൅ ܴ௨௦                            (1) 
 

Although, a drift component due to pullout from the stub is not negligible, it is not modelled explicitly 
but included in ܴ௨௙ for simplicity. 

3.2 Ultimate flexural drift, ܴ௨௙ 

The flexural drift component, ܴ௨௙ , is assumed to consist of elastic component, ܴ௬ , and plastic 
component, ܴ௨௙௣ , as shown in Figure 2(a). Two components are computed based on the idealized 
curvature distribution in Figure 2(b) and their summation makes ܴ௨௙ as Eq. (2). 

 

size(mm)
Vert. rebar

Volume
ratio of

confining
rebars

Vert. rebar Hor. rebar
Thickness

(mm)

1 BC F Barbell 200×200 1.20% 91 35.2 0.047

2 NC F Rec. 120×200 1.96% 120 35.5 0.047

3 BC40 F 2.26%

4 BC80 F 1.13%

5 NC40 F 4.23%

6 NC80 F 2.12%

7 MC F 84×214 10-D10 1.35% 27.5

8 SC F 6-D10 1.45% 29.6

9 HN F 10-D10 2.59% 27.8 0.206

10 WA1D F 1650×1250 250×150 1.58% 32.1 1.40

11 WB1D F 150×250 1.45% 31.3 1.32

12 WC1D F+S 150×300 8-D13 1.31% 150 29.1 0.088

13 WD1D F+S 100×450 12-D10 1.93% 100 31.2 0.124

14 NSW1 F 0.000

15 NSW2 S

16 NSW3 F

17 NSW4 F 2.00

18 NSW5 F 120×206 2.50% 1-D10@60

19 NSW6 F 900×1800 200×250 1.40% 2-D10@200 2-D10@100 200

20 C F AS. Barbell 240×300 12-D10 0.65% 2-D4@35 45.5 0.039

21 NM3 F 110×220 8-D10 1.71% 38.3

22 N F 3.81% 45.5

23 N(s70) F 1.90% 2-D4@70 42.6

24 N(MQd3.1) F 110×393 10-D10 5.63% 38.9 0.053 3.13

Elevation
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*4

No. Specimen
Ref.
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Section
configuration

*3

Confined area *5 Wall panel *6
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level
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ratio *9
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ܴ௨௙ ൌ ܴ௬ ൅ ܴ௨௙௣ ൌ
ଵ

ு
൫∆௬ ൅ ∆௨௙௣൯                   (2) 

∆௨௙௣ൌ ݈௣߶௨௙௣൫ܪ െ 0.5݈௣൯                       (3) 

∆௬ൌ
ொೠுయ

ଷாூ
                              (4) 

 

where elastic drift ratio, ܴ௬ ൌ ∆௬ ⁄ܪ , is computed from a linear elastic curvature distribution over the 
height. The plastic drift ratio, ܴ௨௙௣ ൌ ∆௨௙௣ ⁄ܪ , is computed from a uniform plastic curvature, ߶௨௙௣, 
over the equivalent plastic hinge height, ݈௣. Then, ∆௨௙௣ is the ultimate plastic drift displacement, ∆௬ is 
the elastic drift displacement when the plastic drift reaches ∆௨௙௣, 	߶௨௙௣ is the ultimate plastic curvature 
over the plastic hinge, ܳ௨ is the shear force when ߶௨௙௣ is reached, and ܫܧ is the flexural stiffness of the 
wall. 

A fiber based analysis is carried out to compute plastic flexural drift component, ∆௨௙௣. Different fibers 
represent elements for either plain concrete, confined concrete and vertical reinforcing bars. Plain 
concrete of wall panels and covers is modelled with Popovics model (1973) (Figure 3(a)). The peak 
point of stress-strain relation for confined concrete is simulated by Sakino - Sun model (1994) and 
Popovics model was again used to describe its stress-strain relation (Figure 3(a)). The stress-strain 
relations for vertical reinforcing bars were modelled with tri-linear curves (Figure 3(b)). Once a set of 
shear force, ܳ௨ , and plastic drift component, ܴ௨௙௣ , is obtained, corresponding ܴ௬  can be computed 
using a basic elastic theory as ∆௬ൌ ܳ௨ܪଷ ሺ3ܫܧሻ⁄ . 

௙ܴ 	is considered to reach ܴ௨௙ when one of following three conditions is met. In the numerical simulation 
for twenty-four specimens, #1 did not happen and #2 governed most of the specimens. 
 

1. When the load carrying capacity decreases to 80% of the peak load. 
2. When the extreme compressive fiber strain of core concrete reaches the ultimate limit strain, ߝ௖௨. This 

study uses Mander’s model expressed by Eq. (6). 
3. When the strain of tensile vertical reinforcing bars reaches the ultimate limit strain. This study uses 0.15. 

 
 
 

 
(a) Flexural deformation                        (b) Idealized curvature distribution 

Figure 2: Decomposition of ultimate flexural drift component 

	ܳ 

Height: H 

݈௣ 

Elastic curvature: ߶௬ 

Plastic curvature: ߶௨௙௣ 

∆௬ ∆௨௙௣ 
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(a) Plain and confined concrete                                (b) Steel reinforcement 
Figure 3: Numerical model of stress –strain relations for BC40 

 

The ultimate limit strain of confined concrete, ߝ௖௨, is computed with Mander’s model (Mander et al. 
1988, Paulay and Priestley 1992) as Eq. (5). 

 

௖௨ߝ ൌ 0.004 ൅ ௦ߩ1.4 ௬݂௛ߝ௠ ݂′௖௖⁄                       (5) 
 

where ݂′ܿܿ is the compressive strength of confined concrete computed using Sakino-Sun model, ߝ௠ is 
the steel strain of confining reinforcement at the maximum tensile stress, ݏߩ and ݂݄ݕ is the volumetric 

ratio and yield strength of confining reinforcement, respectively. In this study, ߝ௠ is considered as the 
limit strain of confining reinforcement and its rational value was studied. The ultimate point of concrete 
for BC40 is marked in Figure 3(a) as an example. 

3.3 Ultimate shear drift, ܴ௨௦ 

Beyer et al.’s model (2011) is used to simulate the shear drift component. This model allows the 
estimation of the ratio of shear-to-flexural deformations for shear walls whose shear-transfer mechanism 
is not significantly deteriorating. The ratio of shear drift, ܴ௨௦, to flexural drift, ܴ௨௙, is expressed as Eqs. 
(6) and (7). 

 
ோೠೞ
ோೠ೑

ൌ 1.5
ఌ೘೐ೌ೙

థு ୲ୟ୬ఉ
                            (6) 

ߚ ൌ tanିଵ ቄቀ
௝ௗ

௏
ቁ ቀ ௟݂ܾ௪ ൅

஺ೞೢ௙೤ೢ
௦

ቁቅ ൑ 90௢                  (7) 

 

where ߝ௠௘௔௡ is the axial strain at the center of gravity of the wall section, ߶ is the curvature at the critical 
section, ܪ is the shear span. Variable ߚ is the cracking angle measured against the element axis and 
assumed 45 degrees in this study, which is suggested by Beyer et al. for simplification. Variables ߝ௠௘௔௡ 
and ߶ are known values from the fiber based analysis. With this equation, the shear drift component can 
be obtained with an easy and stable manner once the flexural drift component is computed. 

3.4 Simulation procedures 

Six equations for equivalent plastic hinge length, ݈௣, is listed in Table 2. Index ߙ in #1 is taken as 0.2, 
0.33, and 0.5 and Index ߚ in #2 was taken as 4. After all, eight patterns were tested for plastic hinge 
length and the equivalent plastic hinge length roughly ranges from 200mm to 1000mm for twenty-four 
specimens. 
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The limit strain of confining reinforcement, ߝ௠, in Eq. (5) is taken between 1% and 8% at one percent 
increment (eight types). By combining eight ݈௣’s and eight ߝ௠’s, over 50 combinations for ݈௣ and ߝ௠ 
were computed for each specimen to search the best combination to simulate ultimate drift. 
 

Table 2: Existing equations to compute equivalent plastic hinge length. 
No. Reference Equation 

1 
Kono et al. (2014) 
Kowalski (2011) 
Thomsen and Wallace (2004) 

݈௣ ൌ  (.was taken as 0.2, 0.33 and 0.5 ߙ) ௪݈ߙ

2 
Takahashi et al. (2013) 
Kabeyasawa el al. (2011) 
Wallace and Moehle (1992)  

݈௣ ൌ  (.was taken as 4 ߚ) ௪ݐߚ

3 Paulay and Priestley (1992) ݈௣ ൌ 0.2݈௪ ൅  ܪ0.044
4 Priestley et al. (1996) ݈௣ ൌ ܪ0.08 ൅ 0.15 ௬݂݀௕݈௪ 
5 Panagioraks and Fardis (2001) ݈௣ ൌ ܪ0.12 ൅ 0.014 ௬݂݀௕݈௪ 

6 Bohl and Adebar (2011) ݈௣ ൌ ሺ0.2݈௪ ൅ ሻ൫1ܪ0.05 െ 1.5 ܲ ൫݂′௖ܣ௚൯⁄ ൯ ൏ 0.8݈௪ 
 shear span, ݈௪ = length of wall, ݀௕and ௬݂ = diameter and yield strength of longitudinal reinforcement, respectively. ܲ = axial load, ݂′௖ = ܪ
=concrete compressive strength, ܣ௚ = wall cross-section area 

3.5 Simulation results 

A set of ݈௣ and ߝ௠ were optimized to best simulate the ultimate drifts of fourteen specimens (#1 through 
#13, and #23), which were symmetric and had confined end regions. The concept of the ultimate limit 
strain by Mander et al. relatively well functions for these specimens due to confined end region. 
Simulations are conducted for each case of equivalent plastic hinge length and the best ߝ௠ for each ݈௣ 
is shown in Table 3, which also shows mean and standard deviation of ܴ௨ି௘௫௣ ܴ௨ି௖௔௟⁄ . Panagioraks and 
Fardis’s model has slightly higher standard deviation but other models give similarly acceptable results. 
Among them, three cases were chosen for further discussion since they show a wide variation of ݈௣. 

 
1. ݈௣ ൌ 0.2݈௪ and ߝ௠ ൌ 6%. (mean=1.07, stv=0.19) 
2. ݈௣ ൌ 0.33݈௪ and ߝ௠ ൌ 2%. (mean=0.98, stv=0.17) 
3. ݈௣ ൌ 0.5݈௪ and ߝ௠ ൌ 1%. (mean=0.90, stv=0.17) 

 

Table 4 shows statistics of these three cases for the ultimate drift capacity and its load. The results for  
ܴ௨ି௘௫௣ ܴ௨ି௖௔௟⁄  are not good for ten remaining specimens. On the other hand, the results on load 
(ܳ௨ି௘௫௣ ܳ௨ି௖௔௟⁄ ) are similarly acceptable for three cases on both fourteen selected and ten remaining 
specimens. 

In order to study the scatter of data shown in Table 4, the experimental and simulated drifts are shown 
in Figure 4 for fourteen selected and ten remaining specimens, respectively, for Case 2 (݈௣ ൌ 0.33݈௪ 
and ߝ௠ ൌ 2%). In Figure 4(b), large errors occur for specimens with large shear sliding and specimens 
with no confined regions. NSW6 had large drift capacity in the experiment and its value is much higher 
than the prediction. 

Table 4 shows that Case 1, Case2 and Case 3 are similarly good. Equivalent plastic hinge length for 
Case 1 and Case 3 are nearly the minimum and maximum extremes for eight cases and Case 2 (݈௣ ൌ
0.33݈௪ and ߝ௠ ൌ 2%) takes the intermediate values. This demonstrates that various combinations of ݈௣ 
and ߝ௠ make equally good agreement with experimental drift capacity. 

The effects of cyclic loading is neglected since the analysis is monotonic. The cyclic effects are 
important to rigorously simulate the wall under seismic loading. If the flexural failure is controlled by 
buckling of vertical reinforcement (Dodd and Restrepo 1995), a simple monotonic simulation may not 
be able to catch the point of ultimate failure point due to bar buckling. This aspect is left to the future 
study. 
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Table 3: Statistics of selected simulation results for 14 selected specimens. 

No. Equation for ݈௣ ߝ௠ *1 
ܴ௨ି௘௫௣ ܴ௨ି௖௔௟⁄  
mean std 

1-1 ݈௣ ൌ 0.2݈௪  6% 1.07 0.19 
1-2 ݈௣ ൌ 0.33݈௪  2% 0.98 0.17 
1-3 ݈௣ ൌ 0.5݈௪  1% 0.90 0.17 
2 ݈௣ ൌ  ௪  4% 0.96 0.20ݐ4
3 Paulay and Priestley (1992) 4% 0.98 0.18 
4 Priestley et al. (1996) 1% 1.02 0.22 
5 Panagioraks and Fardis (2001) 8% 1.26 0.42 
6 Bohl and Adebar (2011) 4% 0.98 0.18 

 .௠ was chosen for the best results for given ݈௣ߝ :1*

 

Table 4: Ratio of experimental to computed results in terms of drift (ܴ௨ି௘௫௣ ܴ௨ି௖௔௟⁄ ) and load 
(ܳ௨ି௘௫௣ ܳ௨ି௖௔௟⁄ ). 

14 selected
specimens

10 remaining
specimens

14 selected
specimens

10 remaining
specimens

mean 1.07 2.54 0.93 0.85
std 0.19 1.49 0.10 0.08

mean 0.98 1.84 0.89 0.84
std 0.17 0.99 0.05 0.06

mean 0.90 1.48 0.89 0.83
std 0.17 0.77 0.04 0.06

Qu-exp/Qu-cal

R
u-

ex
p/

R
u-

ca
l

lp=0.2lw, m=6%

lp=0.33lw, m=2%

lp=0.5lw, m=1%

Ru-exp/Ru-cal

Item *1 lp and m Type

 
*1: Equivalent plastic hinge length (݈௣), and the limit strain of confined reinforcement (ߝ௠) are listed.  *2: Shaded boxes list optimized values 

and the other boxes list results due to optimization. 

 

  
(a)  14 selected specimens (Ave. 0.98, STD 0.17)           (b)  10 remaining specimens (Ave. 1.84, STD 0.99) 

Figure 4: Comparisons between experimental and computed ultimate drifts points (݈௣ ൌ 0.33݈௪ and 
௠ߝ ൌ 2%) 

4 CONCLUSIONS 

Twenty-four reinforced concrete wall specimens were studied to simulate the ultimate drift capacity. A 
simple fiber based analysis combined with Beyer’s shear drift model is able to provide load and drift of 
ultimate points by choosing a proper set of equivalent plastic hinge length (݈௣) and the limit strain of 
confined concrete (ߝ௠). This study shows that ݈௣ ൌ 0.33݈௪ and ߝ௠ ൌ 2% gave the best simulation for 
the ultimate drift capacity and ultimate load capacity for 14 selected specimens. However, other 
combinations of ݈௣ and ߝ௠ provide similarly good ultimate drift capacity with similar errors and the best 
combination of  ݈௣  and ߝ௠  should be chosen by looking at other test results such as yielding of 
longitudinal bars and concrete damage. 
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