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Abstract 

The development of rocking in bridge structures has been identified as a valid isolation technique 
for structures under seismic loading. By utilizing uplift in the bridge system, ductility and strength 
demands can be reduced on the structural element. This limits the damage to the element, and 
reduces residual displacements of the structure due to the system’s self-centring capability. Whilst 
multiple experimental studies on this isolation method have been conducted by researchers, limited 
focus has been placed on numerical models, specifically three-dimensional micro-models, which 
allow for better understanding of the actions of the bridge structure undergoing this motion. The 
objective of the present research is the development and validation of two three-dimensional finite 
element models undergoing cyclic loading, using the software package ANSYS - a conventional 
reinforced concrete monolithic bridge pier and a precast post-tensioned concrete bridge pier 
wrapped in FRP which allows uplift. The validation of these models according to existing 
experimental data focuses on the damage of the bridge pier under sustained loading and the 
corresponding concrete constitutive models utilised. Once the models have been validated, further 
work allows for easy identification of the benefits of FRP and rocking. The models may also be 
applied to future research involving improved structural systems and larger bridge structures. 
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1. INTRODUCTION 
 
Conventionally designed bridges rely on inelastic behaviour of the piers to dissipate energy during 
seismic events, which can result in significant damage and residual displacement of the structure, 
sometimes requiring demolition. In an effort to reduce this damage, elastic self-centring systems 
have been introduced, which utilise the idea of ‘rocking’ by allowing uplift to occur. In the case of 
bridges, this uplift may be allowed at the pier-foundation interface such that only elastic 
deformation occurs, and therefore minimal, if any, residual damage is incurred. 
 
Early work on the rocking mechanism in structures was done by Housner (1963), and furthered with 
studies by Priestley (1991) focusing on the use of post-tensioned tendons for use in precast frames, 
whilst allowing a rocking mechanism to develop. The tendon assists in the structural stability and 
self-centring of the system, whilst the movement towards precast solutions for building systems has 
risen from the need for cheaper and more efficient construction methods. This ‘hybrid’ system 
allows for large lateral displacements to occur with little permanent structural damage or residual 
deformations. Rocking columns for use in bridge substructure design have utilised variations of the 
‘hybrid’ solution in studies by various researchers, with experimental work focusing on single 
bridge pier models. Some studies have included additional energy dissipative devices, such as mild 
steel bars (Palermo et al. 2007), which have the potential to provide greater system stability along 
with increased energy dissipation capacity, and the use of externally wrapped fibre-reinforced 
polymer (FRP) as an alternate form of reinforcement and stability (ElGawady et al. 2010). In the 
computational modelling of these systems, emphasis has been placed upon simplified analytical 
models of the lumped plasticity and multi-spring model type, and have been summarised by 
Palermo et al. (2005). Few finite element (FE) studies exist, with those completed showing 
deficiencies in the definition of the concrete material model. Studies by Ou et al. (2007) and 
Dawood et al. (2012) utilised the computational software ABAQUS to develop three-dimensional 
(3D) FE models of single segmented piers, subjected to cyclic and monotonic loading respectively. 
At larger drift values the models failed to sufficiently capture strength and stiffness degradation, 
hence under-estimating residual damage. 

This paper details the development of a 3D FE model of a single precast concrete bridge pier, 
utilising post-tensioning and FRP wrapping as confinement. This model is subjected to cyclic 
loading, and allowed to uplift and form a rocking motion. Similarly, a model of a conventional 
monolithic reinforced concrete column is also developed. Special attention is paid to the definition 
of the concrete material models utilised and results are compared to existing experimental data for 
validation purposes. After validating the initial two models, it is possible to develop a third model 
which is monolithically constructed, but introduces the use of FRP. The comparison of the three 
models then allows the benefits of the use of FRP, and the use of the elastic rocking system to be 
demonstrated clearly.  
 
2. 3D FE MODELS 
 
Three 3D FE models have been developed, representing a single bridge pier. The models consist of 
a circular column, the bridge substructure in the form of a foundation section, and the bridge 
superstructure in the form of loading stub. The first model is a reinforced concrete monolithic 
bridge column, conventionally designed such that plastic hinges form upon repeated lateral loading. 
The second FE model replicates the geometry of the first model, but is modelled with a precast 
post-tensioned system, is wrapped in FRP, and is allowed to develop uplift during the application of 
lateral forces. Once the two original models are validated, a third model is developed utilising 
monolithic construction, but introducing FRP wrapping as an additional reinforcement technique. 
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reduced damage observed at the base during the rocking motion in experimental studies. No 
additional confinement pressure was applied to the model by the modelling of this FRP. FRP failure 
and FRP-concrete interaction in the form of delamination were not considered.  
 
The built-in concrete element (SOLID65) available in ANSYS was not used in this numerical 
model, as the treatment of the concrete cracking and crushing behaviour was found to be unsuitable. 
Several preliminary analyses using the SOLID65 element were performed, but it is thought that the 
lack of any further steel reinforcement (in addition to the unbonded tendon) in the structure resulted 
in excessive premature tensile cracking of the concrete at the base of the column which led to 
solution divergence. The premise behind allowing a structure to uplift and rock during lateral 
loading is based upon the need for damage avoidance, with previous research showing reduced 
structural damage during dynamic or cyclic loading. Furthermore, the use of FRP has been shown 
to further reduce damage at the base of the column. It was thus inferred that a simpler solid element 
may be used to represent the concrete in the rocking FE model. However, as less absolute element 
failure is expected, the compressive softening branch of a typical stress-strain curve for reinforced 
concrete becomes more important than the tensile cracking strength in this model. As the SOLID65 
element cannot detail softening behaviour, and has already been determined to be unsuitable in the 
current analysis, a more stable method of reducing the strength and stiffness of the model at 
increasing strains is needed. The 3D structural solid element SOLID185 was thus used in this 
model, together with an elastoplastic multilinear isotropic hardening model. In order to gradually 
reduce the strength and stiffness of the elements as the analysis progressed, the ANSYS command 
‘MPCHG’ was used (ANSYS Inc. 2011), which allows the material of an element to be changed 
during an analysis. Several different materials were defined with a reduced stress-strain curve 
specified for each subsequent material. Following each period of the loading cycle, the strain in 
each concrete element is determined, and the material of that element can then be changed 
accordingly, without stopping the analysis. In this way, a softening behaviour is imitated, as the 
strength of the elements is reduced with increase in strain. Elements with a strain greater than 0.06, 
which is taken as a state of crushing for confined concrete, are assigned a very low strength, which 
maintains stability. 
 
The unbonded post-tensioned tendon is defined by a general metal plasticity model, with the tendon 
running through the centre of the column system. The tendon remains unbonded through the body 
of the column, but is anchored in the foundation and loading stub, providing a post-tensioning 
equivalent to 30% of the tendon’s ultimate capacity. 3D surface-to-surface contact was specified on 
both the column-foundation interface, and the column-loading stub interface, which allows for 
interactions between the model surfaces during the development of the rocking motion to be 
monitored. Rough contact requires a defined friction coefficient of 0.5 to be overcome before uplift 
may occur.  
 
This simulation uses the full loading sequence from the tests by Booker (2008) shown in Figure 
2(b). The full loading sequence cycles up to 6.9% drift, followed by a secondary loading sequence 
of three half cycles of positive displacement only, up to a drift of 15.4%. Results up to 4.6% drift 
may be extracted for comparison with the two additional models, whilst the larger drifts in the 
secondary loading sequence allow further insight into any permanent damage caused by the rocking 
behaviour. 
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cases. Most notable is the significant reduction in energy dissipation of the PTFRP model as 
compared to both of the monolithic columns. 
 

Table 1: Residual Displacements/Drifts 

 
 

Table 2: Differences in Numerical Hysteretic Energy Dissipation 

 
 

4. CONCLUSIONS 
 
Two 3D FE models have been developed and subjected to a cyclic loading pattern. The results were 
analysed and validated according to existing experimental data. The first model represents a 
conventionally built reinforced concrete monolithic bridge column, which forms a plastic hinge 
under cyclic loading, resulting in permanent damage and residual displacement. The second model 
utilises the more efficient precast concrete construction with FRP as a confinement material, and is 
allowed to uplift and develop a rocking motion under cyclic loading, which allows the structure to 
remain elastic and limits damage and residual displacements.  
 
Preliminary modelling and a review of FE concrete models led to the use of two different concrete 
constitutive models for use in the FE models, dependent on the behaviour and amount of damage 
expected in the concrete. The built-in concrete element in ANSYS, SOLID65, was utilised in the 
monolithic model, with some modifications and the addition of a secondary kinematic hardening 
material model. In the PTFRP model, a solid structural element is defined, with a gradual softening 
behaviour imitated through the use of material changes with reduced strength properties according 
to the strain in each individual element. The results of the numerical models showed good 
agreement beside the existing experimental data, with the material models utilised resulting in an 
adequate representation of the concrete degradation under cyclic loading. 
 
After validation of these models, a third model was developed consisting of a conventional 
monolithic column wrapped in FRP. The results of this simulation allow direct comparisons to be 
made between the three models such that conclusions may be drawn as to the benefits of FRP 
wrapping and rocking behaviour. Clear advantages can be identified in the potential of FRP to 
increase strength and reduce stiffness degradation and residual displacements as compared to 
conventionally reinforced columns. The post-tensioned rocking column further improved behaviour 
under sustained loading and reduced the permanent damage in the system with residual 
deformations of near zero. The rocking system was also able to withstand loading at large drifts 
whilst sustaining minimal damage. A disadvantage may be identified, however, in the form of 
reduced hysteretic energy dissipation in the rocking column, which would have to be improved 
before the system could be implemented.  
 

Experimental Numerical

Monolithic 30.48/1.85 34.23/2.07 mm/%

PTFRP 4.09/0.25 0.08/0.01 mm/%

Mono FRP - 16.1/0.98 mm/%

Base case Comparison

Monolithic Mono FRP -5.14 %

Mono FRP PTFRP -72.04 %

Monolithic PTFRP -73.81 %
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With the advantages of rocking behaviour established, it will be possible to expand the existing 
validated 3D FE models to consider several different forms of increased energy dissipation in a 
more efficient manner than experimental studies. It will also be possible to extend the FE model to 
explore larger bridge span behaviour using rocking as an earthquake mitigation technique. 
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