
  

1. INTRODUCTION 
 
The Malay Peninsula is on a stable part of the Eurasian plate and is in a region of low 
seismicity. However the peninsula has a long history of experiencing tremors generated 
from the long distance earthquakes in the Sumatra fault and the sub-duction fault offshore 
of Sumatra (Balendra et al, 2001). The closest distance of these two major active faults 
from the Peninsula is 300 km and 500 km respectively. The sub-duction fault generated the 
magnitude 9.3 “Aceh” earthquake on the 26th of December 2004 and magnitude 8.7 “Nias” 
earthquake on the 28th of March, 2005. Although no damage to infrastructure was reported 
in Malaysia, these major events caused great concerns of the need to address seismic risks 
in view of the lack of preparedness within the community and the lack of considerations for 
seismic performance in the design of the infrastructure. The objective of this paper is to 
develop a practical model for predicting seismic actions on vulnerable structures in 
Malaysia based on projected earthquake scenarios generated by these distant seismic 
sources.  
 
The first design earthquake scenario is a magnitude 9.5 earthquake generated from the sub-
duction fault at the closest epicentral distance of 500 km from Kuala Lumpur (and the 
neighboring centers of population) as shown in Figure 1. Whilst this projected magnitude is 
close to that of the Aceh earthquake, the possibility of having earthquakes of this size was 
suggested prior to this event (eg. Zachariasen, et al. (1999)). The highest earthquake 
magnitude ever recorded in history is the magnitude 9.5 Chilean earthquake.  
 
The second design earthquake scenario is a magnitude 7.8 earthquake generated from the 
Sumatran fault at the closer epicentral distance of 300 km. The design earthquake scenarios 
for Kuala Lumpur and the surrounding cities have been summarized in Table 1. 
 

Table 1 Design Earthquake Scenarios 
Fault Source Magnitude Distance(km) 

Sub-duction 
Sumatran Fault 

9.5 
7.8* 

500 
300 

*note: the stated earthquake scenario is consistent with the study reported in Balendra, et al., (2001), that has 
analysed the influence of long-distant earthquakes affecting the Singapore region. 
 
The stated earthquake scenario enables the level of ground shaking to be predicted using a 
representative attenuation relationship, which can be obtained by: 

(i) Empirical correlation of strong motion data, 
(ii) Correlation of intensity data obtained from historical earthquake archives, 
(iii) Acceleration simulations using Green’s functional methodology, and 
(iv) Accelerogram simulations by the stochastic methodology. 
 

The relative merits and limitations of these methodologies were discussed in Lam et al 
(2005). It was concluded that the stochastic methodology is amongst the most viable means 
of obtaining representative attenuation relationship in low seismicity countries such as 
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Malaysia and Singapore. This contention has been based on the favorable comparisons of 
the stochastic simulation model GENQKE [Lam, et.al, 2000] with the recorded spectra of 
the Aceh & Nias earthquakes as shown in Figures 2a & 2b. The seismological parameters 
used in the GENQKE simulations were as follows : Seismic wave Quality Factor Q0 = 150; 
Upper Crustal attenuation factor (Kappa) κ = 0.02; Shear Wave Velocity (SWV) model of 
the rock has been developed using the global crustal data obtained from CRUST 2.0 (2001) 
and a methodology of constructing rock SWV profiles combining global and local data as 
described in Chandler et al (2005). 
 
The rock response spectrum simulations for the design earthquake scenarios in Table 1 
developed using GENQKE (as presented in Section 2) and the effects of soil amplifications 
on the rock motions are considered in Section 3. The seismic assessment of building 
structures using the developed response spectrum model is discussed in Section 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Seismic sources affecting Malaysian region 
 
2. SIMULATIONS OF ROCK RESPONSE SPECTRA 
 
The design earthquake scenarios noted in Table 1 have been simulated using the same 
seismological parameters used for the predictions shown in Figures 2a & 2b. The simulated 
response spectra together with the idealized bi-linear model as defined by equation (1) are 
shown in Figure 3.  
RSVrock (mm/sec) = 54 * T    for T ≤ 2 sec  
RSVrock (mm/sec) = 108         for T  > 2 sec                           (1) 
where T is the natural period (sec) and RSV is Response Spectral Velocity (mm/sec). 

 

Aceh earthquake 

Nias earthquake  

Sumatran fault 

Subduction  zone  
of Indo - 
Australian plate 
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(a) ACEH earthquake M = 9.3 R = 1200 km 
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(b) NIAS earthquake M = 8.7 R = 750 km 

Figure 2. Comparison of recorded and simulated response spectra 
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Figure 3. Simulated and idealised design response spectra on rock 

 
 

3. EFFECTS OF SOIL AMPLIFICATION ON ROCK MOTIONS 
 

The effects of soil amplification on the rock motions presented in Section 2, were analyzed 
using a one-dimensional shear wave analysis [program SHAKE, Schnabel et al, 1972] 
based on the information provided by borehole records obtained from different parts of the 
Malaysian peninsula including Singapore. In analysing these profiles, the in-situ layering 
conditions have been adopted. The damping and modulus degradation models adopted in 
this study were consistent with that used in earlier studies (eg. Venkatesan et al, 2004). The 
natural periods of these soil profiles varied between 0.3 and 1.2 sec. Structures found on 
these soil sites are assumed to possess the notional 5% critical damping. 
 
Figure 4 presents the velocity response spectrum of a deep (flexible) soil site with a site 
natural period of 1.2 sec. An idealized bi-linear model is also shown in the figure alongside 
the response spectrum for the bedrock surface and the soil surface. Similar response spectra 
were obtained for sites possessing different natural periods. It was observed from the 
simulated response spectra that the highest velocity demand on the soil site was about 5 
times that of the bedrock at the site natural period. In other words, the highest velocity 
demand on the soil site increases with increasing site natural period as can be inferred from 
the trend shown in Figure 5. Thus the response spectrum for a soil site can be calculated 
and constructed for any given site natural period as shown in Figure 6. 
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Figure 4. Bi-linear idealisation of soil velocity response spectra 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Peak soil response spectral velocity and soil amplification factor 
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Figure 6. Velocity response spectrum model for soil site with natural period = 1 sec 
 
 
4. APPLICATION OF THE DEVELOPED MODEL 
 
In this section, the soil response spectrum model developed in Figure 6 is used to predict 
the drift demand of a precast concrete building with a soft-story at ground level (Figure 7). 
Assuming a natural period of 1 second for the soft-storey building, the predicted velocity 
demand on the structure is 270mm/sec according to Figure 6. The corresponding response 
spectral displacement (RSD) demand on the generalized single-degree-of-freedom system 
is calculated from Equation 2 to be in the order of 40mm - 50mm. 
          RSD (mm) = RSV(mm/sec) * T/2π                                                                             (2)               

The calculated displacement demand is translated into a significant drift of 1.5%-2% on the 
building shown in Figure 7 based on a soft-storey height of 3-4m. This example 
demonstrates the vulnerability of soft-storey buildings on soft soil sites in an earthquake.  
 
5. CLOSING REMARKS 
 
A response spectrum model for the projected major distant earthquake scenarios affecting 
Kuala Lumpur and the surrounding cities has been developed from a combination of 
seismological, geotechnical and structural response modeling. The response spectrum 
model can be applied to assess the drift demand of idealised soft-storey buildings and 
buildings of other structural forms provided that the appropriate participation factors have 

Page 29-6



  

been incorporated into the calculations. Importantly, the seismological simulations have 
been evaluated by comparing the predicted response spectra with those recorded in 
Singapore from the recent major earthquake events of ACEH and NIAS. 
 
 

 

 
 

Figure 7. Drift behavior of a soft-storey building 
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