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Abstract 
 

Tectonic uplift of the southern Hikurangi Margin is recorded by Pleistocene marine 

terraces preserved along the south coast of the North Island of New Zealand. We 

employ optically stimulated luminescence (OSL) analysis of overlying deposits, and 

strandline elevations, to quantify uplift across the margin. The highest uplift rate,  

1.67 ± 0.08 mm/yr, is recorded by the easternmost terrace, ~40 km from the Hikurangi 

Trough. Uplift decreases monotonically towards the west, to  

0.15 ± 0.03 mm/yr, ~70 km from the trough. The long wavelength of uplift suggests 

that deep-seated processes, most likely subduction of the buoyant Hikurangi Plateau 

and permanent co-seismic uplift resulting from repeated megathrust earthquakes, are 

responsible for the vertical deformation across this region. At distances >70 km from 

the trough, terraces are vertically offset across the major upper plate faults, suggesting 

that these structures contribute locally to enhanced uplift rates, while overall uplift is 

possibly related to sediment underplating. 
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1. BACKGROUND: 
 
At the southern Hikurangi Margin (Fig.1 Inset), the subduction interface between the 

Australian and Pacific plates, beneath the southern North Island of New Zealand, is 

‘locked’ (e.g. Reyners, 1998; Darby & Beavan, 2001; Wallace et al., 2004; 2012). It 

has previously been estimated that sudden slip on this locked portion of the interface 

could result in a subduction megathrust earthquake of Mw 8.0-8.5 or larger (Reyners, 

1998; Wallace et al., 2009). Historically, however, no significant (>Mw 7.2) subduction 

earthquake has occurred at the southern Hikurangi Margin (Wallace et al., 2009), and 

the hazard from subduction earthquakes to this region, which includes New Zealand’s 

capital city of Wellington, remains largely unknown.  

 

Upper plate deformation patterns at subduction margins can provide insight into 

underlying subduction processes, including megathrust earthquakes (e.g. Bradley & 

Griggs, 1976; Ghani, 1978; Muhs et al., 1990; Machare & Ortlieb, 1992; Ota et al., 

1996). Co-seismic deformation reported immediately after past megathrust 

earthquakes, such as the 2011 Mw 9.1 Tohoku-Oki earthquake, the 2004 Mw 9.3 

Sumatra-Andaman earthquake, the 1964 Mw 9.4 in Alaska, and the 1960 Mw 9.5 Chile 

earthquake, generally includes the abrupt uplift of the coast closest to the subduction 

trench, to a distance of ~150 km. In addition, a similarly-oriented region of subsidence 

appears further from the trench (e.g. Grantz et al., 1964; Plafker, 1965; 1972; Subarya 

et al., 2006; Vigny et al., 2011). Characteristics of the subducting plate, such as crustal 

thickness and variations in topography, can also influence rates and patterns of 

deformation on the upper plate. These deep-seated processes result in changes 

detectable over long periods of time (i.e. 100,000’s of years). For instance, along the 

coast of southern Peru, uplift rates have increased since ~800 ka due to the Nazca Ridge 

subduction (Saillard et al., 2011).  As such, over many earthquake cycles (100,000’s of 

years) net tectonic deformation does not necessarily reflect deformation purely from 

megathrust earthquakes, if at all. However, we may expect that deformation reflecting 

subduction-related processes, including megathrust earthquakes, would more typically 

be expressed as broad-wavelength (~100-200 km) signatures.  

 

With the objective to provide insight into the relationship between permanent vertical 

deformation and subduction processes at the southern end of the Hikurangi Margin, we 

provide a new evaluation of the age and distribution of the flights of late Pleistocene 

marine terraces preserved along the south coast of the North Island (see Fig. 1, Fig. 2). 

 

Figure 1: Lower North Island of New 

Zealand, showing the major active 

faults (Barnes et al., 1998; Barnes & 

Audru, 1999; Begg & Johnston, 2000; 

GNS Science Active Faults Database 

- http://data.gns.cri.nz/af/) and field 

sites of this investigation. Cross 

section of X-X’ profile is shown in 

Fig. 3. Background satellite image 

from Digital Globe/ TerraMetrics 

(Google Earth) 2016. Inset – Tectonic 

setting of New Zealand. 
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Such geomorphic features, when constrained by absolute dating, provide a valuable set  

of data with which to quantify tectonic uplift (e.g. Pedoja et al., 2006; Wilson et al., 

2007; Matsu’ura et al., 2009; Saillard et al., 2011).  

 

 

 

We employ OSL analysis to obtain numerical ages for the Pleistocene terraces 

preserved on the south coast of the North Island, many for the first time. Shore platform 

elevations are accurately measured for the first time using Global Navigational Satellite 

Systems (GNSS) surveying. We use the surveyed data points (latitude, longitude, 

elevation) to construct a plane of best fit for the shore platforms and determine their 

attitudes (strike and dip) where they are preserved along the coast. Because the ancient 

shorelines are now obscured by coverbed deposits, we use the calculated shore platform 

attitudes to reconstruct strandline elevations. These strandline elevations, corrected for 

sea level during their formative highstands, have been used to quantify rates of uplift 

across the southern Hikurangi Margin. 

 

2. RESULTS: 

 

Seven different-age Pleistocene terraces are preserved at a number of sites along the 

south coast of the North Island, although not all of the different-aged terraces are 

preserved at each site. The most commonly-preserved terraces formed during sea level 

highstands of Marine Isotope Stages (MIS) 5a (~82 ka), 5c (~96 ka), 5e (~123 ka) and 

7a (~196 ka). The terraces are most continuously preserved within the forearc region of 

the Hikurangi Margin, which spans a distance of ~70 km from the Hikurangi Trough.  

 

The highest uplift rate of 1.67 ± 0.08 mm/yr is recorded by the easternmost preserved 

terrace on the south coast of the North Island, near Cape Palliser, ~40 km from the 

trough (Fig. 3). Here, the MIS 5e terrace is tilted by 2.5-2.9° towards the west. At ~50 

km from the Hikurangi trough, the uplift rate determined from the younger MIS 5a 

terrace is 1.25 ± 0.08 mm/yr.  Moreover, this MIS 5a terrace is also tilted less than the 

older terraces along this coast, with a dip of 1.5° towards the west. The lowest rate of 

uplift, <0.2 mm/yr, is observed at Wharekauhau, ~70 km from the trough. Overall, in 

the Hikurangi Forearc, uplift monotonically decreases away from the trough, despite 

being calculated from different-aged terraces along this coast. In addition, terraces are 

tilted towards the west, with older terraces exhibiting the most tilting.  

Figure 2: Aerial photograph showing 

Pleistocene marine terraces preserved 

at Baring Head, taken looking to the 

east. Photo taken by L. Homer – GNS 

Science Visual Media Library VML 

ID: 9025, Catalogue Number: 1163/7. 

Terraces are labelled, from youngest to 

oldest, T1-T6. Baring Head, on the 

west and upthrown side of the 

Wairarapa Fault, has the most number 

of preserved terraces of any of the sites 

on the south coast of the North Island 

of New Zealand. 
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The marine terraces are vertically offset across a number of upper plate faults, most 

notably in the Axial Ranges, at a distance of >70 km from the Hikurangi Trough (see 

Fig. 3). The uplift rate west and on the upthrown side of the Wairarapa Fault is as much 

as 1.59 mm/yr. West of Wellington, where the Ohariu Fault offsets marine terraces 

preserved at Tongue Point, uplift calculated from the western, upthrown side of the 

fault is 0.55 ± 0.04 mm/yr, whereas uplift calculated from the downthrown side is 0.16 

± 0.04 mm/yr.  

 

3. DISCUSSION & CONCLUSIONS: 

 

The broad-wavelength pattern of uplift observed within ~70 km from the trough, in the 

forearc region of the southern Hikurangi Margin, suggests that deep-seated processes 

are the main contributors to permanent vertical deformation preserved there. In the 

Axial Ranges, at >70 from the Hikurangi trough, the major active upper plate faults 

evidently contribute to enhanced uplift rates on the upthrown sides of the faults. 

However, because the region that spans the Axial Ranges is elevated overall, uplift here 

also likely has a deeper source.  

 

We have compared our uplift rates and vertical deformation patterns to results estimated 

by tectonic modelling of the southern Hikurangi Margin (Lichfield et al., 2007; Clark et 

al., 2015). Based on these comparisons, we conclude that the most likely contenders for 

the broad wavelength uplift pattern seen across the southern Hikurangi margin forearc 

are subduction of the buoyant Hikurangi Plateau and permanent uplift resulting from 

repeated megathrust earthquakes. Across the Axial Ranges, uplift is possibly related to 

the sediment underplating previously identified beneath this region (Henrys et al., 

2013).  
 

 

 

Figure 3: Schematic cross section X-X’ across southern North Island, showing representative 

topography (exaggerated), uplift rates and locations of faults observed to offset the Pleistocene marine 

terraces; ‘BH F.’ is Baring Head Fault, ‘U F.’ is an un-named fault at Baring Head. Figure modified 

after Little et al. (2009) and updated using data from Begg & Johnston (2000), Henrys et al. (2013) 

and Williams et al. (2013). Subsurface Wairarapa Fault location and region of sediment underplating 

from Henrys et al. (2013). 
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