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ABSTRACT: It is very common for buildings in Australia to have shear walls and cores 

as the primary lateral load resisting system and reinforced concrete moment resisting 

frames as the gravity load resisting system. However, often little to no attention is given 

to the displacement capacity of these frames and their ability to move with the walls in 

the event of an earthquake. In particular, there are concerns about the seismic response of 

the beam-column joints as they are typically poorly detailed and are vulnerable to failure 

mechanisms which are not accounted for in design. This paper presents interim findings 

of a study that is aimed to examine practical means of modelling non-ductile reinforced 

concrete beam-column joints. The two main mechanisms which contribute to joint 

inelastic behaviour, the shear response of the joint core and the slip of longitudinal beam 

reinforcement bars, are investigated. The findings of this study will be useful in assessing 

the seismic performance of buildings with non-ductile reinforced concrete gravity 

moment resisting frames.  

Keywords: Non-ductile reinforced concrete beam-column joints, gravity moment 

resisting frames, inelastic joint behaviour 

1. INTRODUCTION 

There has been a growing interest in Australia to assess the seismic performance of vulnerable 

buildings due to greater awareness of the potential losses that may be endured by cities in the event of 

an earthquake. This research is primarily interested in the performance of reinforced concrete (RC) 

moment resisting frames (MRFs) which form part of the gravity load resisting system in buildings that 

have shear walls/cores as the primary lateral load resisting system. This form of construction is very 

common in Australia; however, there is a general concern that the gravity frames do not have 

sufficient displacement capacity to move with the walls under seismic loading due to their non-ductile 

detailing. This is particularly a concern for older mid-rise buildings constructed prior to the 1990s 

when no consideration was given to seismic loading. Such buildings which have eccentrically placed 

cores, due to the preference of providing open floor space for occupants and hence significant 

displacement demand may be imposed on the perimeter frames due to torsional effects.  

In general, there has been lack of research into the performance of frames forming part of the 

secondary structural system. However, over the past few decades significant research has been 

conducted on the performance of non-ductile MRFs forming part of the primary lateral load resisting 

system in regions of high seismicity (Park, 1996; Hakuto, Park & Tanaka, 2000; Ghannoum, Moehle 

& Bozorgnia, 2008). The deficiencies in the design and detailing of these frames are very similar to 

those in gravity frames designed in accordance with the current Australian Concrete Structures 

standard, AS 3600 (2009). Some of the common characteristics are:  

 Minimal to no transverse reinforcement (ties) in the beam-column joint region 

 Poor anchorage of the longitudinal reinforcement bars in the joint region 

 Inadequate transverse reinforcement in beams and columns (for shear strength and confine-

ment) 

 Splices located in potential hinge regions 

 Inadequate longitudinal reinforcement in columns 

Based on the deficiencies highlighted, it is clear that the two greatest concerns of RC frames are the 

performance of the columns and the beam-column joints. The focus of this paper is the latter.   
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It is common practice to assume rigid joints in the design of reinforced concrete (RC) moment 

resisting frames (MRFs) irrespective of the type of detailing that is provided. This assumption is not 

valid when assessing the seismic performance of frames as there may be a significant reduction in the 

joint rigidity due to shear deformation of the joint panel and slip of beam longitudinal reinforcement 

bars. Therefore, the assumption of rigid joints often results in an overestimation of the frames’ (and 

also the buildings’) stiffness and an underestimation of the expected drifts (Shafaei, Zareian, Hosseini 

& Marefat, 2014). Furthermore, the consideration of joint flexibility is particularly important for non-

ductile RC MRFs since significant strength and stiffness degradation can occur once the maximum 

joint shear strength is reached. Therefore, in order to accurately assess the performance of non-ductile 

RC frames and hence the global response of buildings, it is critical to incorporate the inelastic 

behaviour of the joints (and hence joint flexibility) in numerical models. 

2. LITERATURE REVIEW 

The behaviour of beam-column joints under lateral loading is complex; however it is well accepted 

that two key mechanisms define the joint response: (i) the inelastic shear response of the joint core and 

(ii) the slip of bottom longitudinal beam reinforcement bars. The consideration of these two 

mechanisms, which leads to a reduction in joint rigidity, is critical in assessing the performance of 

non-ductile joints since premature and sudden failure of the joints may occur before full capacity of 

the frame members have developed.  

Various numerical models have been established to incorporate joint behaviour in the modelling of 

frames. Some of these models are illustrated in Figure 1.  

 

 

(a) Centre-line model 

 

(b) Rigid joint model 

 

(c) Scissors model without rigid joints 
 

 
(d) Scissors model 

 
(e) Lowes and Altoontash (2003) model 

 
(f) Joint2D 

 

Figure 1: Summary of various joint models  

The center-line model and the rigid joint model (Figure 1(a) and 1(b)) ignore the effects of joint 

flexibility, which is the common practice for the design of gravity frames. In these models it is 

assumed that the behaviour of the frame will be governed only by the behaviour of the beams and the 

columns. The explicit modelling of joint response has become possible with the introduction of zero-

length rotational spring elements, which also allow the decoupling of the inelastic response of beams 

and columns. One of the first models to incorporate zero-length rotational spring elements was by El-

Metwally and Chen (1988, cited Celik & Ellingwood, 2008) where the spring is located at the 

intersection of the beam and column members (Figure 1(c)). The inelastic behaviour of the joint is 

defined through the spring via a load-deformation response. This model is sometimes referred to as the 

scissors model without rigid joints, and was later improved by Alath and Kunnath (1995, cited in Celik 

& Ellingwood, 2008) and is better known as the scissors model (Figure 1(d)). The shear deformation 

of the joint core (panel) is simulated via the zero-length rotational spring element; however, the beams 

and the columns are connected via rigid links in this model and are capable of rotating independently. 

More recently a continuum type of element has been introduced, combined with transition interface 

elements to allow for compatibility with beam-column line elements. An example of this is the model 

introduced by Lowes and Altoontash (2003) (Figure 1(e)). The model, which explicitly simulates three 

inelastic mechanisms of a joint consists of: (i) one rotational spring to model the shear response of the 
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joint core, (ii) eight bar-slip springs to represent the bond failure of the longitudinal bars within the 

beams and the columns, and (iii) four interface-shear springs to model the loss of shear load transfer at 

the beam-joint and column-joint interfaces due to crushing of the concrete. While the model provides 

high control over the various inputs its disadvantage is the increased computational effort. Also there 

is the lack of availability of detailed response of various components (such as bond-slip). Therefore 

the model was simplified by Altoontash (2004) and the simplified model is commonly referred to as 

the Joint2D (Figure 1(f)). Joint2D has a rotational spring to model the shear deformations within the 

joint core, and it has four zero-length rotational springs at the beam-joint and column-joint interfaces 

to model bond-slip behaviour of the longitudinal beam and column bars. Both the Lowes and 

Altoontash (2003) model and Joint2D model have been implemented in OpenSees (2013).  

A critical part of any of the models which attempt to simulate joint behaviour is the load-deformation 

response which is more commonly referred to as the backbone or envelope response. The most 

accurate method to obtain the backbone curve is from experimental testing in order to capture the 

complex behaviour of joints. To the knowledge of the authors there is no consensus on one available 

empirical or numerical model that is capable of providing the backbone curve of various joints with 

different detailing. However, it is generally accepted that for seismically detailed beam-column joints, 

the modified compression field theory (MCFT) may be used to provide a good approximation of the 

expected backbone curve (Altoontash, 2004); although this approach is generally not suitable for non-

ductile joints (Celik and Ellingwood, 2008). Instead, strut and tie models are preferred to obtain the 

joint shear strength since the primary mechanism formed in non-ductile joints to transfer forces is a 

single compression strut formed between the compression zones of the adjacent beam/s and columns 

(shown in Figure 2). In addition there is a preference to use strut and tie models because they are 

easier to implement than the MCFT, thus making it a more practical option for the assessment of 

numerous MRFs with different joint detailing which can then be used to construct fragility curves.  

In this paper the strut and tie model and the approach suggested by Celik and Ellingwood (2008) are 

adopted to construct the backbone curve for various interior and exterior joints. Once the backbone 

curve is obtained, hysteresis rules need to be defined to conduct nonlinear cyclic analysis of the joints. 

This is completed for one of the exterior joints presented in published literature by using the Lowes 

and Altoontash (2003) model in OpenSees. The results are compared with experimental results to 

examine the validity of the proposed approach.  

             
Figure 2: Forces acting on exterior and interior joints (adopted from Hakuto, Park & Tanaka, 2000) 

3. METHODOLOGY  

The four key steps involved in conducting nonlinear cyclic analysis for non-ductile joints are 

discussed in this section.  

3.1 Defining the backbone curve 

The two primary mechanisms which need to be captured by load-deformation response are:  

(i) Inelastic shear response of the joint core/panel 

(ii) Bond-slip of poorly anchored longitudinal beam bars 

Strut Strut 
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The approach suggested by Celik and Ellingwood (2008) to establish the backbone curve combines the 

effects of the two mechanisms into a single stress-strain joint envelope for positive and negative 

bending. The effect of bond-slip is taken into account by reducing the yield and moment capacity of 

the beam under positive bending based on a reduction factor obtained from numerous experiments. 

The rotation experienced by the joint is approximated as the angular joint shear strain (𝛾), and a range 

of values are provided based on experimental tests. The rotation caused by bond-slip is ignored since 

this additional rotation is usually very small. A brief overview of the Celik and Ellingwood (2008) 

model is provided in Table 1.  

Table 1: Celik and Ellingwood (2008) shear stress-strain backbone model guide 

Critical point Positive envelope Negative envelope 

1. Shear cracking 

strength, 𝜏𝑗ℎ.𝑐𝑟  
𝜏𝑗ℎ.𝑐𝑟 = 3.5√1 + 0.002 (

𝑃

𝐴𝑔
)  

Where P/Ag is in psi 
 
Or 

𝜏𝑗ℎ.𝑐𝑟 = 24√(
1

145
) (1 + 0.002 (

𝑃

𝐴𝑔
))    

Where P/Ag is in MPa 
 
 
0.0001 ≤ 𝛾𝑐𝑟 ≤ 0.0013  

𝜏𝑗ℎ.𝑐𝑟 = 3.5√1 + 0.002 (
𝑃

𝐴𝑔
)  

Where P/Ag is in psi 
 
Or 

𝜏𝑗ℎ.𝑐𝑟 = 24√(
1

145
) (1 + 0.002 (

𝑃

𝐴𝑔
))  

Where P/Ag is in MPa 
 
 
0.0001 ≤ 𝛾𝑐𝑟 ≤ 0.0013  

2. Reinforcement 

yielding, 𝜏𝑗ℎ.𝑦 
𝜏𝑗ℎ.𝑦 ≤ 𝜏𝑗ℎ.𝑚𝑎𝑥  

 

Where: 

 𝜏𝑗ℎ.𝑦is the shear stress corresponding to the 

stress imposed on the joint due to beam or 

column yielding reduced by 𝛼 to account for 

bond-slip of longitudinal bars. (0.4 ≤ 𝛼 ≤
0.7) 

𝜏𝑗ℎ.𝑚𝑎𝑥is the joint shear strength obtained 

from strut and tie model. 

 

0.002 ≤ 𝛾𝑦 ≤ 0.01  

𝜏𝑗ℎ.𝑦 ≤ 𝜏𝑗ℎ.𝑚𝑎𝑥  

 

Where: 

 𝜏𝑗ℎ.𝑦is the shear stress corresponding to 

the stress imposed on the joint due to 

beam or column yielding. 

 

 

 

 

 

0.002 ≤ 𝛾𝑦 ≤ 0.01  

3. Ultimate capacity, 

𝜏𝑗ℎ.𝑢 
𝜏𝑗ℎ.𝑢 ≤ 𝜏𝑗ℎ.𝑚𝑎𝑥   

Where: 

𝜏𝑗ℎ.𝑢is the shear stress corresponding to the 

stress imposed on the joint due to beam or 

column reaching ultimate capacity reduced 

by 𝛼 to account for bond-slip of bars.  

 

0.01 ≤ 𝛾𝑢 ≤ 0.03  

𝜏𝑗ℎ.𝑢 ≤ 𝜏𝑗ℎ.𝑚𝑎𝑥   

Where: 

𝜏𝑗ℎ.𝑢is the shear stress corresponding to 

the stress imposed on the joint due to 

beam or column reaching ultimate 

capacity. 

 

0.01 ≤ 𝛾𝑢 ≤ 0.03  

4. Residual strength, 

𝜏𝑗ℎ.𝑟𝑒𝑠 

𝜏𝑗ℎ.𝑟𝑒𝑠 = 𝜏𝑗ℎ.𝑐𝑟   

 

0.03 ≤ 𝛾𝑟𝑒𝑠 ≤ 0.1  

𝜏𝑗ℎ.𝑟𝑒𝑠 = 𝜏𝑗ℎ.𝑐𝑟   

 

0.03 ≤ 𝛾𝑟𝑒𝑠 ≤ 0.1  

3.2 Strut and tie model 

A modified version of the strut and tie model presented by Hassan (2011) has been used in this study 

to obtain the maximum shear strength of the joints (𝜏𝑗ℎ.𝑚𝑎𝑥). A brief overview of the model is provided 

in Table 2.   
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Table 2: Adopted strut and tie model 

Effective strut 

compressive 

strength: 

 

𝑓𝑐𝑢 = ∅𝛽𝑠. 𝑓𝑐
′ 

Where: 

∅ = 0.85  

𝛽𝑠   is the concrete softening coefficient 

𝛽𝑠 =
1

1+0.66𝑐𝑜𝑡2𝜃
 as defined in AS 3600 for bottle-shaped strut 

𝜃    is the strut angle (defined later) 

𝑓𝑐
′   is the concrete compressive strength 

Diagonal strut 

capacity: 

 

𝐷 = 𝑓𝑐𝑢𝐴𝑠𝑡𝑟 

Where: 

𝐴𝑠𝑡𝑟 is the concrete strut area, 𝐴𝑠𝑡𝑟 = 𝑎𝑠. 𝑏𝑗  

𝑏𝑗      is the effective joint width 

𝑎𝑠    is the strut depth, 𝑎𝑠 = 𝛽1√𝑎𝑏
2 + 𝑎𝑐

2 

𝑎𝑏    is the compression zone depth of the beam 

    𝑎𝑏 = 𝑘. 𝑑𝑏 

    𝑘 = ((𝜌 + 𝜌′)2𝑛2 + 2(𝜌 +
𝜌′𝑑𝑏

′

𝑑𝑏

)𝑛)

0.5

− (𝜌 + 𝜌′)𝑛 

    𝑛    is modular ratio (𝑛 =
𝐸𝑠

𝐸𝑐
) 

    𝜌    is the ratio of longitudinal beam bars in tension 

    𝜌′   is the ratio of longitudinal beam bars in compression 

    𝑑𝑏   is the distance to the centroid of tensile longitudinal beam bar from the extreme        

          compressive fibre 

    𝑑′𝑏  is the distance to the centroid of compressive longitudinal beam bar from the  

          extreme compressive fibre 

   𝛽1    = 1 − 0.05 × 0.145(𝑓𝑐
′ − 27.6)  ≤ 1.0    

 

𝑎𝑐 is the compressive zone depth of the columns (approximated using the equation 

proposed by Paulay and Priestley) 

𝑎𝑐 = (0.25 + 0.85 (
𝑃

𝑓𝑐
′𝐴𝑔

)) ℎ𝑐 ≤ 0.4ℎ𝑐  

   𝑃    is the axial load 

   𝐴𝑔  is the gross-section of the columns 

   ℎ𝑐   is the column depth (parallel to the direction of lateral loading) 

Joint shear strength:  

 

𝑉𝑗 = 𝐷. cos (𝜃) 

𝜃 is the strut angle, 𝜃 = 𝑡𝑎𝑛−1 (
𝑑𝑏−𝑑𝑏

′

𝑑𝑐−𝑑𝑐
′ ) 

    𝑑𝑐    is the distance to the centroid of tensile longitudinal column bar from the  

          extreme compressive fibre 

    𝑑′𝑐   is the distance to the centroid of compressive longitudinal column bar from the  

          extreme compressive fibre 

Joint shear stress: 

𝜏𝑗ℎ.𝑚𝑎𝑥 =
𝑉𝑗

𝐴𝑗

 

𝐴𝑗 is the effective joint cross-sectional area 

𝐴𝑗 = 𝑏𝑗ℎ𝑐 

3.3 Hysteresis response 

 

Once the backbone curve has been defined, it is necessary to define the hysteresis rules for the cyclic 

response of the joint. Non-ductile joints (and other elements such as columns) typically have 

degrading envelopes and pinched hysteresis response since significant strength and stiffness 

degradation takes place once the ultimate capacity is reached. Therefore a suitable hysteresis curve 

must be multi-linear and allow for a tri-linear unloading-reloading path to represent the pinching 

behaviour of the joint. The Pinching4 material model developed by Lowes and Altoontash (2003) is 

able to represent this behaviour and is used in this study (see Figure 3). The following parameters have 

been adopted for the hysteresis rules as recommended in Shafaei et al. (2014) for exterior joints with 

poorly anchored longitudinal beam bars:  

 
𝑟𝐷𝑖𝑠𝑝𝑃 = 𝑟𝐷𝑖𝑠𝑝𝑁 = 0.5 (1) 

𝑟𝐹𝑜𝑟𝑐𝑒𝑃 = 𝑟𝐹𝑜𝑟𝑐𝑒𝑁 = 0.1 (2) 
𝑢𝐹𝑜𝑟𝑐𝑒𝑃 = 𝑢𝐹𝑜𝑟𝑐𝑒𝑁 = 0.01 (3) 
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Where:  
rDispP defines the ratio of the deformation at which reloading occurs to the maximum historic 

deformation demand 
rDispN   defines the ratio of the deformation at which reloading occurs to the minimum historic 

deformation demand 
rForce    defines the ratio of the force at which reloading begins to force corresponding to the maximum 

historic deformation demand  
rForceN defines the ratio of the force at which reloading begins to force corresponding to the minimum 

historic deformation demand 
uForceP defines the ratio of strength developed upon unloading from negative load to the maximum 

strength developed under monotonic loading 
uForceN defines the ratio of strength developed upon unloading from negative load to the minimum  

strength developed under monotonic loading 
 

 
Figure 3: Pinching4 material model in OpenSees (Lowes & Altoontash, 2003) 

In addition, there are another 15 parameters which can be defined for the Pinching4 material to control 

the loading and unloading stiffness and strength degradation. However, for this study these parameters 

are not utilised.  

3.4 Defining rotational spring element 

Based on the approach by Celik and Ellingwood (2008) highlighted in Section 3.1, only one zero-

length rotational spring element is required to model the joint response. However, instead of 

implementing the scissors model, the Lowes and Altoontash (2003) model (Figure 1(e)) is adopted in 

this study since this joint element has been implemented by the developers in OpenSees (unnecessary 

springs are set to behave as rigid links). In addition, this allows for future work to refine the model 

(and to provide comparison) for cases where the bond-slip and joint response are modelled separately.  

For the Lowes and Altoontash (2003) joint element, the moment imposed at the rotational spring 

element (𝑀𝑗) may be calculated as:  

𝑀𝑗 = 𝜏𝑗ℎ𝑉𝑗   (where 𝑉𝑗 is the joint volume)                     (4) 

And the corresponding joint rotation (𝜃𝑗) is set to the angular joint shear strain: 

𝜃𝑗 = 𝛾                                     (5) 

4. RESULTS AND DISCUSSION  

4.1 Joint shear stress-strain backbone curves 

The backbone curve obtained from the Celik and Ellingwood (2008) model for the lower, mid-range 

and upper bound of angular shear strains are compared with experimental results (shown in Figures 4-

Envelope (solid black line) 

defined by backbone curve 



7 

6) obtained from published literature for interior and exterior joints which have detailing that are 

similar to Australian beam-column joints. Details of the joints are not provided due to space 

constraints. However an image of the joint is provided with the results, as well as the axial load ratio 

(𝐴𝐿𝑅 =
𝑃

𝑓𝑐
′𝐴𝑔

). 

4.1.1 Interior Joints 

 

    
Figure 4: Joint stress-strain backbone (a) Walker (2001), test# PEER 14 with ALR=0.1, (b) Pessiki et al.,(1990), 

test# 7 with ALR = 0.36. 

4.1.2 Exterior Joints 

 

     
Figure 5: Joint stress-strain backbone, Pentelides et al. (2002) (a) test#1 with ALR 0.1, (b) test #2 with ALR 0.25 

(embedment depth of beam bar is 150 mm) 

 

      
Figure 6: Joint stress-strain backbone, Shafaei et al. (2014) (a) joint test#2 with ALR=0.16, (b) joint test#3 with 

ALR 0.16 (embedment depth of beam bar is 75 mm) 

The results show that in general the model is capable of predicting the ultimate capacity of the joints 

(except for Pentelides et al. (2002) joint test#1). It is also observed that the residual strength predicted 

(a) (b) 

(a) (b) 

(b) (a) 
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by the model is not representative of the significant degradation which can take place in non-ductile 

joints after the ultimate shear capacity is reached. It is noted, however, that the residual strength 

predicted by Celik and Ellingwood (2008) would be suitable for predicting the performance of joints 

forming part of the primary lateral load resisting system, as failure of the joint is likely to be taken at 

20% reduction of the peak capacity. Such an approach cannot be adopted when analysing the 

performance of joints in frames forming part of the secondary structural system where often the axial 

load failure is of interest. To be able to determine this point accurately it is necessary to have a model 

that is able to predict the joint strength at axial failure as well as the expected joint rotation. The 

determination of this point is the next stage of research which will be conducted by the authors in 

future work. 

4.2 Nonlinear cyclic analysis 

Comparison between the simulated results obtained from the nonlinear cyclic analysis for joint#3 

presented in Shafaei et al. (2014) and the experimental results is provided in Figure 7. The results 

show the column shear versus the drift. It is noted that force-based nonlinear beam-column elements 

were used with five integration points to model the beam and the columns in OpenSees. Figure 7(a) 

illustrates the importance of considering joint response, as the rigid joint assumption is not capable of 

capturing the strength and stiffness degradation experienced by the beam-column joint, and hence 

overestimating the displacement capacity of the joints. Figure 7(b) shows the simulated response 

obtained in this study via using the experimental backbone curve presented in Shafaei et al. (2014). 

Figures 7(c) to 7(e) illustrate the response obtained from the three backbone curves established in this 

study (Figure 6(b)). Considering the simplicity of the adopted approach, the level of accuracy is 

acceptable and has the potential of being improved through modifications in the future.  

 

  
 

   
Figure 7: Comparison between simulated results by Shafaei et al. (2014) and this study for various backbone 

curves. 

 

5. CONCLUSION 

This study has investigated a practical method of modelling the response of non-ductile reinforced 

concrete beam-column joints under various axial load ratios. An applicable model for the assessment 

of numerous frames (required for the construction of fragility curves) requires simplicity (and hence 

efficiency) without significant compromise of the level of accuracy provided. The adopted backbone 

model, suggested by Celik and Elligwood (2008), and the modified strut and tie model originally 

presented by Hassan (2011) have shown to provide a reasonable degree of accuracy for the interior 

(a) (b) 

(c) (d) (e) 
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and exterior joints investigated in this paper. However, the authors intend to improve the proposed 

approach with particular focus on defining the point at which axial load failure occurs and hence to 

accurately determine the displacement capacity of non-ductile joints in frames forming part of the 

secondary structural system.  
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