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ABSTRACT: The performance of any liquefaction hazard framework is intimately linked 

to the procedures used within it. For the Liquefaction Severity Number (LSN), post-

liquefaction volumetric strain potential (εv) is one of several inputs used to assess the 

damage-potential of liquefaction. However, as with other inputs to the LSN framework, 

different techniques exist for estimating εv, each of which could lead to different computed 

LSN values, and by corollary, different assessments of liquefaction hazard. Accordingly, 

this study investigates six techniques for estimating εv using analyses of 7,000 liquefaction 

case-studies from the 2010-2011 Canterbury earthquakes. Results indicate that: (1) the LSN 

hazard scale (i.e. relationship between computed LSN and expected liquefaction hazard) is 

dependent on the εv estimation method; (2) accounting for these different hazard scales, the 

εv estimation method had no effect on the accuracy of LSN hazard assessment, such that all 

performed equally well; however (3) a control model in which εv was removed performed 

best, suggesting that εv either provides no statistically distinguishable benefits in terms of 

prediction accuracy, or is presently accounted for in such a way that is not optimal.  

1 INTRODUCTION 

The 2010-2011 Canterbury, New Zealand, earthquake sequence (CES) induced pervasive and severe 

soil liquefaction in the Christchurch region, resulting in widespread damage to civil infrastructure. As 

illustrated by the CES and other recent earthquakes, accurate assessment of liquefaction hazard is 

critical. Towards this end, hazard frameworks have been proposed to link the factor of safety against 

liquefaction triggering at depth (FSliq) to the severity of liquefaction manifested at the ground surface, 

which serves as a pragmatic proxy for liquefaction damage potential. Within this realm, existing 

frameworks include: (1) the widely-used liquefaction potential index (LPI) (Iwasaki et al. 1978); (2) an 

Ishihara (1985) inspired variation of LPI, termed LPIISH (Maurer et al. 2015a); and (3) the liquefaction 

severity number (LSN) (van Ballegooy et al. 2014a), a variation of 1-D post-liquefaction settlement (e.g. 

Zhang et al. 2002). Central to all hazard frameworks are proposed decision thresholds corresponding to 

different levels of expected hazard. For example, Tonkin and Taylor (2013) proposed that little to no 

liquefaction manifestation is expected where LSN < 20; moderate to severe liquefaction manifestation 

is expected where 20 < LSN < 40; and major manifestation of liquefaction is expected where LSN > 40.  

Importantly, the efficacies of proposed threshold values are intimately linked to (Maurer et al., 2015b): 

(1) the approach used to select thresholds, and the assumed misprediction consequences implicit to such 

selections; (2) the assessed dataset; and (3) the adopted procedures used within the liquefaction hazard 

framework. The focus of this study is on the latter as it pertains to the performance of LSN, which is 

now widely used in New Zealand. LSN is defined as (van Ballegooy et al. 2014a):  

LSN = 10 ∫ ϵv 𝑧⁄
20 

0
 d𝑧 (1) 

where εv is the estimated post-liquefaction volumetric strain (%), and z is depth (m) below the ground 

surface. LSN thus assumes that the severity of liquefaction manifestation is a function of the cumulative 

thickness of liquefiable strata, the proximity of these strata to the ground surface, and the induced 

volumetric strain within these strata. Van Ballegooy et al. (2014a) proposed using the Zhang et al. (2002) 

approach to estimate εv, wherein values of equivalent-clean-sand-normalized CPT tip resistance (qc1Ncs) 

and computed FSliq are used to assess a soil’s post-liquefaction strain potential. The performance of LN 
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hazard assessment is therefore closely tied to the procedures used to determine FSliq and εv. With respect 

to the former, several studies have investigated the influence of the procedure used to compute FSliq on 

the accuracy of liquefaction hazard assessment. Among those commonly used in today’s practice, the 

Idriss and Boulanger (2008) procedure has performed marginally better in analyzing data from the CES 

(Green et al. 2014; van Ballegooy et al. 2014a; Maurer et al. 2015c; 2015d) and is thus recommended 

by New Zealand Ministry of Business, Innovation, and Employment guidelines (MBIE, 2015).  

Conversely, the influence of the procedure used to estimate εv is unknown. While significant differences 

exist among such procedures, the potential importance of these differences has never been thoroughly 

evaluated. Accordingly, this study investigates the influence of estimated εv on the accuracy of LSN 

hazard assessment using an analysis of 7,000 liquefaction case-studies from the CES, wherein six 

methods for estimating εv are used within the LSN framework. In the following, these six methods are 

first discussed in detail. The liquefaction case-studies to be analyzed, and additional methods used 

herein, are then summarized, followed by assessments of LSN performance.    

1.1 Estimating Post-Liquefaction Volumetric-Strain (εv) 

While attempts to estimate εv trace to earlier studies (e.g. Lee and Albaisa 1974), current CPT-based 

methods for estimating εv are often rooted in the work of Nagase and Ishihara (1988), who conducted 

cyclic simple shear tests on saturated sands of varying relative density (Dr).  Based largely on the results 

of Nagase and Ishihara (1988), Ishihara and Yoshimine (1992) proposed a series of curves, shown in 

Figure 1a, for estimating εv as a function of FSliq and Dr. Using a correlation proposed by Tatsuoka et al. 

(1990) to convert from Dr to qc1N, Zhang et al. (2002) converted the Ishihara and Yoshimine (1992) 

curves into a form suitable for use with CPT-based procedures for computing FSliq, as shown in Figure 

1b. However, to better capture trends identified by Ishihara and Yoshimine (1992), additional curves are 

developed in this study (Fig. 1b) for FSliq = 0.95, FSliq = 0.96 … FSliq = 0.99 to supplement those of 

Zhang et al. (2002). As evident in Figure 1b, these curves are needed to accurately represent the 

behaviour identified by Ishihara and Yoshimine (1992), whereas linear interpolations between the FSliq 

= 0.9 and FSliq = 1 curves often fail to do so. It is also noteworthy that the Zhang et al. (2002) curves 

were developed using a correlation to qc1N (i.e. normalized tip resistance, uncorrected for fines), but are 

proposed for use with values of qc1Ncs. This simplification, justifications for which are given by Zhang 

et al. (2002) and Idriss and Boulanger (2008), is used throughout this study.  

      

Figure 1. (a) Curves for estimating post-liquefaction volumetric-strain (εv) as a function of the factor of safety 
against liquefaction (FSliq) and initial relative density (Dr) (after Ishihara and Yoshimine 1992); (b) curves derived 
from (a) for estimating εv as a function of FSliq and equivalent clean sand normalized CPT tip resistance (qc1Ncs), 
as proposed by Zhang et al. (2002) utilizing Equation (2), with curves added for this study (after Zhang et al. 2002). 

Problematically, while the Zhang et al. (2002) method for estimating εv is widely used in practice, it is 

rigidly tied to the Tatsuoka et al. (1990) correlation developed for Toyoura (Japan) sand, defined as: 
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Dr (%) = −85 + 76 log(qc1N)    (2) 

where Dr and qc1N are as previously defined. Thus, if Equation (2) performs poorly for soils elsewhere, 

the resulting εv estimates could be inaccurate. Alternative correlations include that of Idriss and 

Boulanger (2003), adapted from Salgado et al. (1997), and defined as: 

Dr = 0.465 (
qc1N

C
)

0.264
− 1.063    (3) 

where C is a soil-specific constant. Idriss and Boulanger (2003) used C = 0.9 in analyzing global 

liquefaction case studies, whereas C ranged from 0.64 to 1.55 for soils studied by Salgado et al. (1997). 

Plotted in Figure 2 are Equations (2) and (3), wherein 3 values of C are adopted for the latter (C = 0.64, 

0.9, 1.55). It can be seen that large differences exist among the selected correlations, which could lead 

to different estimates of εv, and thus, different LSN hazard assessments.  

 

Figure 2. Correlations relating equivalent clean sand normalized CPT tip resistance (qc1Ncs) to relative density (Dr). 

 

  
Figure 3. Curves derived from Figure 1a for estimating post-liquefaction volumetric-strain (εv) as a function of the 
factor of safety against liquefaction (FSliq) and equivalent clean sand normalized CPT tip resistance (qc1Ncs), herein 
developed utilizing Equation (3) with C = 0.9: (a) in the style of Zhang et al. (2002); and (b) using approximate, 
continuous solutions proposed by Yoshimine et al. (2006).  

Accordingly, utilizing variants of Equation (3), four alternatives to the Zhang et al. (2002) method are 

derived from Ishihara and Yoshimine (1992). First, as shown in Figure 3a, curves are developed a la 

Zhang et al. (2002) utilizing Equation (3) with C = 0.9, as adopted by Idriss and Boulanger (2003). These 

curves generally result in higher εv estimates relative to Zhang et al. (2002). Second, as shown in Figure 

3b, curves are developed using the continuous function proposed by Yoshimine et al. (2006) which 
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approximates the Ishihara and Yoshimine (1992) relations, wherein Equation (3) is again used with C = 

0.9. Notably, the Zhang et al. (2002) approach suffers from two limitations solved by the Yoshimine et 

al. (2006) function: (1) it is laborious, such that developing curves for multiple Dr - qc1N correlations is 

impractical; and (2) the resulting curves are defined by discrete functions, such that interpolation is 

required to estimate εv.. It can be seen in Figure 3a and 3b that εv estimates are very similar using these 

two approaches, but that εv is not bound to the Ishihara and Yoshimine (1992) parameter space (i.e. 30% 

< Dr  < 90%) in the latter. The Yoshimine et al. (2006) function is thus recommended for its pragmatic 

benefits. Third and fourth, εv is estimated using the Yoshimine et al. (2006) function and Equation (3) 

with respective C values of 0.64 and 1.55, the significance of which are as mentioned previously.  

In addition, a “control” method is developed. To assess the possibility that manifestation severity is not 

influenced explicitly by Dr (i.e. beyond its influence in procedures that compute FSliq), εv is set to an 

arbitrary value of 1% for all FSliq < 1, and 0 otherwise. The six aforementioned methods for estimating 

εv are summarized in Table 1 and henceforth referred to as S1, S2, S3, S4, S5, and C1, respectively 

(Table 1, column 1).   

Table 1. Summary of εv estimation methods to be assessed in the LSN framework. 

ID 

Derived from 

Ishihara & 

Yoshimine 1992 

Dr - qc1N 

Correlation 

Utilized 

Function(s) 

S1  Eq. (2) Zhang et al. 2002 

S2  Eq. (3); C = 0.9 
Available on request                   

(a la Zhang et al. 2002) 

S3  Eq. (3); C = 0.9 Yoshimine et al. 2006 

S4  Eq. (3); C = 0.64 Yoshimine et al. 2006 

S5  Eq. (3); C = 1.55 Yoshimine et al. 2006 

C1  N/A εv (%) = {
1     for  FSliq < 1

0     for  FSliq ≥ 1
 

3 DATA AND METHODOLOGY 

3.1 CPT Soundings 

This study utilizes 3,500 CPT soundings performed at sites where the severity of liquefaction 

manifestation was well-documented following both the Darfield and Christchurch earthquakes, resulting 

in 7,000 liquefaction case studies. Soundings were performed on various dates following the start of the 

CES, to include dates prior to, and following, the Christchurch earthquake. The CPT data is assumed to 

be unaffected by the date of the sounding (i.e., by the quantity and relative timing of prior earthquakes), 

as supported by Lees et al. (2015). In compiling the 7,000 case studies, CPT soundings were first rejected 

if: (1) performed at sites where the predominant manifestation of liquefaction was lateral spreading; (2) 

the depth of “pre-drill” significantly exceeded the estimated depth to ground water, or (3) believed to 

have prematurely terminated on shallow gravels, as inferred from an Anselin (1995) Local Morans I 

analysis. For further discussion of CPTs and this geostatistical analysis, see Maurer et al. (2014).  

3.2 Liquefaction Severity 

Observations of liquefaction and the severity of manifestation were made by the authors for each CPT 

sounding location following both the Darfield and Christchurch earthquakes. CPT sites were assigned 

one of six damage classifications, as described in Green et al. (2014). Of the 7,000 cases compiled, 49% 

are cases of “no manifestation,” and 51% are cases where manifestations were observed and classified. 

3.3 Estimation of Peak Ground Acceleration (PGA) 

To evaluate FSliq for use in computing LSN values, PGAs at the ground surface were computed using 
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the Bradley (2013a) model, which combines unconditional PGA distributions estimated by the Bradley 

(2013b) ground motion prediction equation, recorded PGAs from strong motion stations, and the spatial 

correlation of intra-event residuals to compute conditional PGA distributions at sites of interest. 

3.4 Estimation of Ground Water Table (GWT) Depth 

Given the sensitivity of liquefaction hazard to GWT depth (e.g. Maurer et al. 2014), accurate estimates 

of the GWT are critical. For this study, GWT depths were sourced from the event-specific regional 

ground water models of van Ballegooy et al. (2014b). These models, which reflect seasonal and localized 

fluctuations across the region, were derived in part using monitoring data from ~1000 piezometers and 

provide a best-estimate of GWT depths immediately prior to the Darfield and Christchurch earthquakes. 

3.5 Liquefaction Evaluation and LSN 

FSliq was computed using the deterministic procedure proposed by Idriss and Boulanger (2008), where 

the soil behavior type index, Ic, was used to identify non-liquefiable strata; soils with Ic > 2.4 were 

assumed non-liquefiable, per Maurer et al. (2015d). For I&B08, fines content (FC) is required to 

compute normalized tip resistances; as such, FC values were estimated using the Ic-FC correlation 

proposed by Boulanger and Idriss (2014). LSN was computed for each of the 7,000 case studies per 

Equation (1), wherein εv was estimated using each of the six methods summarized in Table 1.  

3.6 Receiver Operating Characteristic (ROC) Analyses 

To investigate the significance of the εv estimation method used in the LSN framework, a standard 

analysis is needed to assess the performance of LSN hazard assessment. More specifically, for the six 

LSN variants, this analysis must: (1) evaluate their relative efficacies, independent of LSN decision 

thresholds; and (2) identify for each the optimum threshold value at which performance is optimized. 

Receiver operating characteristic (ROC) analyses are herein adopted for this purpose.  

In using LSN to predict liquefaction manifestation, the distributions of “positives” (i.e. liquefaction 

manifestation is observed) and “negatives” (i.e. no liquefaction manifestation is observed) overlap when 

the frequencies of the distributions are expressed in terms of computed LSN values. Optimal LSN 

decision thresholds are selected considering the rates of true positives (RTP) (i.e. liquefaction is observed, 

as predicted) and false positives (RFP) (i.e. liquefaction is predicted, but is not observed). Setting the 

threshold too low will result in a higher RFP, the cost of which could be excessive spending on 

engineering design and construction (e.g. ground improvement costs). Conversely, setting the threshold 

too high results in a higher rate of false negatives (i.e. liquefaction is observed when it is predicted not 

to occur), the cost of which is liquefaction-induced damage (e.g. lost productivity, property damage, and 

reconstruction costs, among others). Thresholds should thus be selected so as to minimize these costs.  

ROC curves plot RTP versus RFP for varying threshold values. Figures 4a and 4b illustrate the relationship 

among the positive and negative distributions, the threshold value, and the ROC curve. Figure 4b also 

illustrates how a ROC curve is used to assess the efficiency of a diagnostic test and select an optimum 

threshold. In ROC space, random guessing is indicated by a 1:1 line through the origin (i.e. equivalent 

correct and incorrect predictions), while a perfect model plots as a point at (0,1), indicating the existence 

of a threshold value which perfectly segregates the dataset (i.e. all cases with manifestation have LSN 

above the threshold; all cases without manifestation have LSN below the threshold). While no single 

parameter can fully characterize model performance, the area under a ROC curve (AUC) is commonly 

used for this purpose, where AUC is statistically equivalent to the probability that sites with 

manifestation have higher computed LSN than sites without manifestation (e.g. Fawcett 2005). As such, 

increasing AUC indicates better model performance. The optimum decision threshold, or optimum 

operating point (OOP), is defined herein as the threshold LSN value which minimizes the rate of 

misprediction [i.e. RFP  + (1 - RTP)]. As such, contours of the quantity [RFP + (1 - RTP)] represent points 

of equivalent performance in ROC space, as shown in Figure 4b. For further overview of ROC analyses, 

and for demonstration of how project-specific misprediction consequences can be incorporated into 

ROC analyses, the reader is referred to Fawcett (2005) and Maurer et al. (2015b), respectively.  
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Figure 4. ROC analyses: (a) frequency distributions of liquefaction manifestation and no liquefaction manifestation 
as a function of LSN; (b) corresponding ROC curve, and illustration of how a ROC curve is used to assess the 
efficiency of a diagnostic test. The optimum operating point (OOP) indicates the LSN decision threshold for which 
the rate of misprediction is minimized. 

4 RESULTS AND DISCUSSION 

In Figure 5a, ROC curves are plotted to evaluate the accuracy of LSN hazard assessment for 7,000 

liquefaction case studies from the CES, wherein six variants for estimating εv are assessed. More 

specifically, the performance evaluated in Figure 5 is that of LSN to predict liquefaction manifestations 

likely to damage infrastructure. In the adopted classification scheme (Green et al. 2014), “marginal” 

manifestations are characterized by a trace amount of water or ejecta and are likely to be non-damaging, 

whereas “moderate” to “severe” manifestations are likely to coincide with damage. Shown in Figure 5b 

is a magnified view of the optimal-performance area in ROC space, wherein the optimal LSN decision 

threshold is identified for models S1 through S5. 

 

    

Figure 5. (color) (a) ROC analyses of six LSN variants in predicting liquefaction likely to cause damage; (b) 
magnified view of optimal-performance area, wherein optimal LSN thresholds are identified for S1 through S5.  
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It can be seen in Figure 5a that models S1 through S5 have nearly identical performance, such that none 

of the five methods for estimating εv result in more (or less) accurate LSN hazard assessments for the 

considered case studies. In this regard, the measured AUCs range from 0.78 (S2, S3, S4) to 0.79 (S1 and 

S5). To place this performance in context, AUCs of 0.5 and 1.0 respectively indicate random guessing 

and a perfect model. However, it can be seen in Figure 5b that the LSN threshold at which performance 

is optimal varies significantly, ranging from LSN = 14.6 for S4, to LSN = 38.4 for S5. Thus, if optimal 

thresholds obtained from an analysis using one εv estimation method are applied to forward analyses 

wherein a different method is used, the resulting hazard assessments could be erroneous. Notably, the 

optimal thresholds for models S1 through S4 are reasonably consistent with that proposed by Tonkin 

and Taylor (2013) for predicting “moderate to severe” liquefaction manifestations (i.e. LSN = 20).  

Interestingly, it can be seen in Figures 5a and 5b that “control” model C1 performs best, with measured 

AUC of 0.80. The leading performance of C1 indicates that the utility of εv is unclear. More specifically, 

this result suggests that: (1) εv is not a statistically significant variable for predicting liquefaction 

manifestation (i.e. beyond its inherent accounting for by procedures that compute FSliq, see Dobry 1989); 

and/or (2) εv is accounted for in the LSN framework in such a way that is not optimal; and/or (3) the 

methods adopted for estimating εv (i.e. S1 through S5) do not accurately portray the behavior of soils in 

the case studies assessed herein. With respect to the latter, additional methods for estimating εv in the 

LSN framework could be assessed in future studies.   

Importantly, even the best-performing model has potential for significant improvement. Operating at its 

optimum threshold, C1 has overall accuracy of 71%, indicating that 29% of liquefaction case studies are 

predicted incorrectly. While liquefaction triggering has garnered significant research and debate, the 

mechanics of liquefaction manifestation have received less attention, and seemingly, are less well 

understood. In this regard, further research is needed to fully elucidate and quantify influential factors. 

5 CONCLUSIONS 

Utilizing 7,000 liquefaction case-studies from the CES, this study investigated the influence of the 

method used to estimate εv within the LSN framework on the accuracy of resultant hazard assessments. 

The results are as follows: (1) the LSN hazard scale (i.e. relationship between computed LSN and 

expected liquefaction hazard) is dependent on the εv estimation method, and as such, LSN thresholds 

obtained from analyses using one method should not be applied to forward analyses wherein a different 

method is used; (2) accounting for these different hazard scales, the selected εv estimation method had 

no effect on the accuracy of LSN hazard assessment, such that all methods performed equally well; 

however, (3) a control model in which εv was removed from the LSN framework performed best, 

suggesting that εv either provides no statistically distinguishable benefits in terms of prediction accuracy, 

or is presently accounted for in such a way that is not optimal. Of course, the findings presented are 

based on a dataset from the CES, and their applicability to other datasets, or to methodologies different 

from that used herein, is unknown. 
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