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ABSTRACT: Although the seismic vulnerability of bridges is significantly reduced with 
the advancement of design philosophies, the susceptibility of damage to the existing 
bridge stock is of great concern to the earthquake research community. Fragility curves 
are powerful tools used in the seismic risk assessment of bridges. This study presents the 
fragility curves for multi-span bridges accounting for the uncertainties in the structural 
and material attributes. Nonlinear time history analysis is conducted using three 
dimensional finite element bridge models developed in the OpenSees platform containing 
realistic representations of bridge components including columns, super structure, 
bearings, abutments, and pounding (impact) behavior. The probabilistic seismic demand 
model computed from the time history analysis is convolved with component limit states 
to generate fragility curves. The current study also compares the fragility curves 
generated by the classical approach with the surrogate modeling or parameterized 
approach. The coefficients suggested by the parameterized approach in this study can be 
used to generate bridge specific fragility curves. The study also investigates the influence 
of seismic detailing on multi-span bridges. 

1 INTRODUCTION 

Bridges are considered as the lifeline of modern transportation networks. Damage to bridges after an 
earthquake pose a serious threat to the immediate recovery efforts and can incur large economic 
losses. An effective and increasingly popular technique to determine the effects of earthquake ground 
motions on the bridge system as well as various bridge components is fragility analysis. A fragility 
curve is a conditional probability that gives the likelihood that a structure or component will meet or 
exceed a certain level of damage for a given ground motion intensity. Various researchers (Choi et al. 
2004; Mackie & Stojadinović 2005; Padgett 2007; Ramanathan et al. 2015; Jeon et al. 2015) have 
developed the fragility curves for bridge structures (called hereafter as classical approach). However, 
very few studies have been carried out for the fragility curves of multi-span box girder bridge classes. 
The current study bridges this gap by generating fragility curves for multi-span box girder bridge 
classes. Contrary to the previous studies, the fragility curves are developed in this study using 
surrogate modeling techniques (called hereafter as parameterized fragility curves), (Dukes 2013; 
Ghosh et al. 2013; Rokneddin et al. 2014). The parameterized fragility curves use multi-dimensional 
surrogate models in conjunction with logistic regression techniques to develop the component as well 
as system fragility curves. Thus it helps to create bridge specific fragility curves, and can potentially 
benefit from the new data available from the field investigations. The logistic regression coefficients 
estimated in the current study can be used to generate bridge specific fragility curves for various 
classes of multi-span bridges. The study also investigates the effect of seismic detailing on the seismic 
vulnerability of the multi-span bridges by the comparison of fragility curves for bridges with and 
without ductile detailing.  

One of the notable differences between the seismically and non-seismically designed bridges with the 
evolution of seismic design practice is the detailing aspects of columns (Ramanathan 2012a).  Non-
seismically designed bridges (constructed prior to 1970) are designed primarily to carry gravity loads 
and are often inadequately detailed to resist seismic forces. They are highly vulnerable due to the 
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inadequate shear strength, insufficient splicing at the intersection of columns and footing and/or 
inadequate confinement in the flexural hinge zones. In comparison to the non-seismically designed 
bridges, seismically designed bridges (constructed post 1970) have greater splice lengths and 
transverse reinforcement ratios in the longitudinal and lateral direction. The effects of inadequate shear 
strength and lap splice mode of failure of the bridge columns are not investigated in this study. The 
comparison of the analytical results with the past events is beyond the scope of this research and is a 
part of the ongoing research. 

2 MODELING OF BRIDGE COMPONENTS 

The typical layout of a multi-span box girder bridge is shown in Figure 1. The structural analysis 
phase of the methodology is performed using the Finite element package called OpenSees (Mazzoni, 
et al.  2006). The superstructure is modeled using elastic beam-column elements with mass lumped 
along the centerline and the monolithic solid diaphragms are modeled using transverse rigid elements. 
The properties of deck elements are calculated based on composite section properties to account for 
the presence of box girders. Rigid links are used to connect the top of the column to the solid 
diaphragm. Displacement beam-column elements with fiber cross-sections are used for modeling 
columns. A distributed plasticity element is used to capture the nonlinear hysteretic behavior of the 
column. The contact element developed by Muthukumar & DesRoches (2006), which explicitly 
accounts for the loss of hysteretic energy, is used to model the pounding between the decks. The 
longitudinal response of the abutments includes passive and active resistance. The passive resistance is 
provided by the backfill soil and the piles, while the active resistance and the transverse resistance are 
provided only by the piles. The passive response of the abutment backwall is simulated using the 
hyperbolic soil model proposed by (Shamsabadi & Yan 2008). Trilinear springs stemming from the 
recommendations of (Choi 2002) are used to model the piles. Readers are advised to refer to 
Ramanathan (2012b) for a more detailed and in-depth explanation of the modeling of various bridge 
components. 

 
Figure 1. Typical layout of a multi-span bridge 

The ratio of approach span to main-span is fixed as 0.70 and the column diameter (D) is fixed as 60 in. 
(1.5 m). Column footings are assumed to be fixed at the base. The effect of foundation flexibility and 
soil-structure interaction on the fragility curves is not considered and is a part of the ongoing study. 
The reduced spacing of the stirrups in the transverse direction is considered as the difference between 
seismically and non-seismically designed bridges. Number #4 hoops (0.25 in. dia. bar) at a spacing of 
12 in. on center is assumed as the transverse reinforcement for non-seismically designed bridges while 
for seismically designed bridges, it is assumed as #4 hoops @ 3 in., on center. Bearings are assumed to 
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be of size 14  14  2.5 in. (300  300 60 mm). The geometric and material properties are computed 
based on the plan review of multi-span box girder bridges. 

It’s important to have a wide range of ground motions with a large variation of peak ground 
accelerations to ensure the evaluation of a sufficient range of bridge responses. A suite of 160 ground 
motions is adopted in this study. The ground motions are selected from the PEER database of far field 
earthquakes with magnitude greater than 6.5 and peak ground acceleration greater than 0.2 g such that 
it yields a desired variation of bridge responses. Figure 2 shows the histogram of the PGA values and 
the response spectrum of the selected ground motions. The ground motions are applied along the 
longitudinal axis of the bridge. Statistically significant, yet nominally identical 160 - 3D bridges are 
developed based on the Latin Hypercube Sampling across the range of input parameters (Table 1, 
Ramanathan 2012b; Mangalathu et al. 2015) consistent with the number of ground motions. The 
generated bridge models are paired randomly with the selected 160 ground motions to create a bridge 
model-ground motion pair. Non-linear time history analysis (NLTHA) is carried out on each bridge 
model and the peak component responses are noted to determine the relationship between the peak 
demands and the input parameters 
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Figure 2. a) Histogram of the PGA values of the ground motion suite, b) Acceleration response spectrum of the 
ground motion suite 

Table 1: Distribution of base-model parameters for era 11 single-frame concrete box-girder 
bridges. 

Distribution parameters* Parameter Units Distribution 
Type   

Span length (p1) feet Normal 82.0 8.2 
Deck width (p2) feet Uniform 32.5 98.5 
Column height (p3) feet Normal 16.5 0.16 
Number of columns per bent (p4) - Uniform** 1 4 
Longitudinal reinforcement ratio (p5) % Uniform 1 3.5 
Concrete strength (p6) ksi Normal 5 0.63 
Steel strength (p7) ksi Lognormal 4.21 0.08 
Shear modulus of bearing pad (p8) ksi Uniform 0.08 0.25 
Number of spans (p9) - Uniform** 4 6 

* and  are the parameters of the distribution. These denote mean and standard deviation for a normal distribution, lower 
and upper bound in case of uniform distribution and mean and standard deviation of the associated normal distribution (in 
log space) in the case of a lognormal distribution. 
**only integer values 
 
 

3 DEMAND AND CAPACITY MODELS 

Fragility curves consider the probability that the seismic demand (D) placed on the structure exceeds 

a) b) 
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the capacity (C) conditioned on a chosen intensity measure (IM) representative of the seismic loading. 
The demand aspect of the fragility function is represented by the probabilistic seismic demand 
computed using the results of non-linear time history analysis and regression analysis.  The capacity 
models are described by a two-parameter lognormal distribution with median, Sc and dispersion, βc (βc  
is assigned as 0.35 in a subjective manner due to lack of sufficient information and adopted as same 
across the components and the respective damage states). The general description of system level 
damage states of the bridge and the capacity limit states of the bridge components are given in Table 2 
and Table 3 respectively (Ramanathan 2012b). The capacity limit states are shown in Table 3 for all 
the individual bridge components that are susceptible to damage during ground shaking. 
 

Table 2. General description of system level damage states for bridges (Ramanathan 2012b). 

Bridge system damage 
states 

Slight Moderate Extensive Collapse 

Likely Immediate Post-
Event Traffic State 

Open to 
normal public 
traffic – No 
Restrictions 

Open to Limited 
public traffic – 

speed/weight/lane 
restrictions 

Emergency vehicles 
only – 

speed/weight/lane 
restrictions 

Closed (until 
shored/braced) – 

potential for 
collapse 

 
 

Very unlikely

 
 

Unlikely 

 
 

Likely 

 
 

Very likely 

Traffic Operation 
Implications 
Is closure/detour needed? 
Are traffic restrictions 
needed? 

Unlikely Likely Very Likely Very Likely - 
Detour 

    
 

Very unlikely
 

Unlikely 
 

Likely 
 

Very likely 

Emergency Repair 
Implications 

Is shoring/bracing 
needed?

Is roadway levelling 
needed?

 
Unlikely 

 
Likely 

 
Very Likely 

 
Very Likely - 

Detour 

Table 3. Capacity limit state values of various bridge components (Ramanathan, 2012b). 

Median values, Sc Component 

Slight Moderate Extensive Collapse 

c 

Column curvature ductility (k1) 0.8(1.0)* 0.9(4.0) 1.0(8.0) 1.2(12.0) 0.35 

Abutment seat displacement : 12 – 18 
inch seat(in., k2) 

1.0(2.0) 
 

3.0(6.0) 
 

6.0(10.0) 
 

9.0(15.0) 
 

0.35 
 

Maximum deck displacement (in., k3) 4.0(4.0) 12.0(12.0) - - 0.35 
Active abutment response (in., k4) 1.5(1.5) 4.0(4.0) - - 0.35 

Joint seal displacement (in., k5) 0.75(4.0) 10.0(10.0) - - 0.35 

      * Values in parenthesis corresponds to limit states of modern era bridges 

4 PARAMETERIZED FRAGILITY CURVES 

Fragility curves generated in this study are based on the parameterized fragility approach developed by 
the researchers (Dukes 2013, Ghosh et al. 2013; Rokneddin et al. 2014). In comparison to the classical 
fragility analysis (Choi et al. 2004; Ramanathan et al. 2015) which considers ground motion intensity 
as the only input parameter, the demand models in the parameterized fragility curves are conditioned 
on all the input parameters. Hence, the parameterized fragility approach can also be used to create 
bridge specific fragility curves. A brief outline of this method is given in this section and the readers 
are advised to refer to Ghosh et al. (2013) for a more detailed explanation. We adopted multiple-linear 
regression as the surrogate model in the current study due to its simplicity and easiness in implementa-
tion. The evaluation of various meta-models for the generation of demand models for multi-span 
bridges albeit important is out of the scope of this study and is a part of an ongoing research.  
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The main steps of the parameterized fragility curves connecting the input parameters (p1,…,p9, Sa) to 
the output measures (k1,…,k7) are outlined below: 

Step 1: Perform multiple linear regression analysis for each component (ki, i = 1,…,5) with the input 
parameters (p1,…,p9, Sa) and compute the regression coefficients.  

Step 2: Generate N number of  demand estimates  (1 million in this study) for each component, ki, 
using their respective regression model by generating N values of randomly generated input 
parameters based on their probabilistic distribution. 

Step 3: Generate N capacity values for a specific damage state for each bridge component based on 
their corresponding capacity limit states (Table 3). 

Step 4: Obtain the binary survive-failure vector by comparing the capacity values (step 3) with the 
demand values (step 2). 

Step 5: Conduct a logistic regression on the survive-failure vector to determine the kth component 
probability model, conditioned on the input parameters as 
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where, k,0, k,sa, and k,j’s (j = 1,…,9) are the logistic regression coefficient’s of the kth bridge 
component. 

Step 6: Assuming a series system assumption, estimate the system level binary-survive failure vectors. 
The system level failure probability can be obtained by the logistic regression analysis for the system 
level binary-survive failure vectors. 
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where, SYS,0, SYS,sa, and SYS,j’s (j = 1,…,9) are the logistic regression coefficient’s for the system 
failure. 

Step 7: For a particular bridge with input parameters, p1,…, p9, the classical one-dimensional fragility 
curves can be obtained as 
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where  f(p1),…, f(p9) are the probability density parameters for parameters, p1,…, p9. 

5 RESULTS AND DISCUSSION 

The fragility curves generated by the classical method and the parameterized way for various damage 
states were compared and are shown in Figure 3. It is observed that the fragility curves generated by 
parameterized approach are similar to those obtained using classical approach. However, a significant 
difference is noted for the extensive and complete damage state for the modern era fragility curves. 
The advantage of the parameterized fragility curves lies in the fact that for a specific bridge with 
deterministic input parameters (p1,…, p9), the fragility curves can be computed easily using Equation 3 
with the coefficients given in Table 4.  Table 4 gives the logistic regression coefficient for the system 
level damage for various damage states. 
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Table 4. Logistic regression coefficients for the system damage for various damage states 

Damage states ,0k , ak S  
1,k p  

2,k p
3,k p

4,k p
5,k p

6,k p
7,k p  

8,k p  
9,k p

Slight -7.05 7.62 0.77 8.44 1.03 -0.58 -4.11 0.25 -5.63 -0.80 -1.89
Moderate -26.2 6.38 1.28 5.15 1.33 -0.52 -4.75 -3.74 0.62 -0.04 -1.73
Extensive -26.9 6.33 1.48 5.56 1.28 -0.49 -4.67 -3.38 0.08 -0.12 -1.66

O
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 e
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Collapse -27.8 6.39 1.50 5.02 1.32 -0.54 -4.77 -3.86 0.60 -0.01 -1.80
Slight -12.5 6.65 1.74 4.91 1.85 -0.98 -5.21 0.05 -5.46 -0.13 -1.31
Moderate -18.1 6.49 1.42 4.63 1.84 -0.99 -5.01 -0.23 -5.08 -0.04 -1.22
Extensive -21.1 6.88 1.60 5.50 1.79 -1.07 -4.91 -0.01 -5.87 -0.26 -1.38

M
od

er
n

 
er

a 

Collapse -23.8 6.61 0.88 6.07 2.72 -0.93 -5.43 -0.88 -6.39 -0.64 -1.10
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Figure 3. Comparison of the classical and parametrized fragility curved for various damage states: a) Old era, b) 
Modern era 
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Figure 4. Bridge and component system fragility curves for multi-span box girder bridges for old era’s a) Slight, 

b) Moderate, c) Extensive and d) Collapse. 

One simple technique to evaluate the difference in the fragility curve is to evaluate the relative change 
in the median value of the fragility curves. An increase in the median value means a less vulnerable 
structure while a decrease in the median value indicates a more vulnerable structure. The median value 
of the fragility curves for modern era bridges are much larger than the old era bridges for all the limit 

a) b) 

c) d) 

a) b) 
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states. From the results presented in Figure 3, it is observed that seismic vulnerability is significantly 
reduced with the implementation of seismic design principles in the design. The median value of 
fragility curves for distinct damage states of old era bridges (Figure 3a) are so close due to its limited 
capacity resulting from the non-ductile design (Table 3). The effect of ductile design on the various 
damage states is clearly visible with the dispersion of fragility curves for modern era bridges (Figure 
3b). 

The system and component fragility curves for the multi-span bridges for various damage states for 
the old era and modern era are shown in Figure 4 and Figure 5 respectively. From the results presented 
in Figure 4 and Figure 5, it is noted that the columns and abutment seat are the most vulnerable 
components. The component fragilities (columns, abutments, bearings etc.) are integrated into the 
system fragility using the approach mentioned in Section 4. The components such as abutment active, 
deck displacement, and joint seal have less contribution to the overall system vulnerability. The 
vulnerability of the system as well as the components decreases with the evolution of seismic design 
principles.  
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Figure 5. Bridge and component system fragility curves for multi-span box girder bridges for modern era’s a) 
Slight, b) Moderate, c) Extensive and d) Collapse. 

6 CONCLUSION 

In this study, two methods of fragility analysis i.e., classical and parameterized fragility approach are 
compared. In addition, the effects of earthquake ground motions on the bridge system as well as bridge 
components are also evaluated using fragility analysis. Three dimensional finite element models of the 
bridge incorporating both material as well as geometric nonlinearities are developed in the OpenSees 
platform that contain realistic representations of bearings, abutments, and pounding of adjacent deck 
segments using nonlinear springs. Probabilistic seismic demand models generated using NLTHA are 
convolved with limit states to develop the component and system fragility curves. 

It is observed that the integrated parameterized fragility curves and classical fragility curves are in 
good agreement for the multi-span bridges considered in the current study and the coefficients of the 
parameterized fragility curves generated can be used to generate bridge specific fragility curves. The 
transition of seismic vulnerability with the evolution of seismic design practices is gauged in the 
current study through the comparison of fragility curves for old and modern eras. The study shows that 

a) b) 

c) d)
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seismic vulnerability of the bridges is reduced significantly with the evolvement of seismic design 
philosophy. 
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