
Proceedings of the Tenth Pacific Conference on Earthquake Engineering 

Building an Earthquake-Resilient Pacific 

6-8 November 2015, Sydney, Australia 

Damage detection in the 2015 Nepal earthquake  
using ALOS-2 satellite SAR imagery 

W. Liu & F. Yamazaki 

Chiba University, Chiba, Japan. 

ABSTRACT: The Mw 7.8 earthquake jolted the central region of Nepal on April 25, 2015, 

and caused gigantic destruction. Satellite remote sensing is an effective tool to grasp 

damages in a wide area. In this study, pre- and post-event ALOS-2 satellite SAR data were 

used to detect affected areas in Kathmandu, the capital city of Nepal. Firstly, the crustal 

movements around the Kathmandu Valley were estimated by the interferometric SAR 

(InSAR) analysis using a pre- and post-event pair data. Due to the large fault plane of the 

earthquake, significant displacements occurred in the whole valley. More than 1 m 

movements to the line-of-sight direction were obtained in the target area. Then the damaged 

areas in the centre of Kathmandu were detected by three different indices. First one is the 

normalized difference coherence index, calculated from both the amplitude and phase 

information of SAR echo. Second and third indices were calculated from only the 

amplitude information based on differences and correlation coefficients. Comparing with 

optical satellite images, all the indices showed good capability in damage extraction at an 

emergency response phase. 

1 INTRODUCTION 

An Mw 7.8 earthquake hit Nepal at 11: 56 am on April 25, 2013. The epicentre was located at 28. 23° 

N, 84.73° E, with a shallow focal depth of 8 km. This earthquake was caused by thrust faulting between 

the subducting India Plate and the overriding Eurasia Plate. According to the fault model calculated 

from seismic waveforms by USGS, the causative fault plane is 20 km in length and 15 km in width with 

295-degrees strike angle and 10-degrees dip angle. Due to the strong motion in a wide area, it became 

the worst natural disaster in Nepal since the 1934 Bihar, Nepal earthquake. More than 8,600 people were 

killed in Nepal and 161 people in the surrounding countries due to building collapses, landslides and 

avalanches triggered by the strong shaking. Thousands of houses were destroyed and more than 450,000 

people were displaced. Several famous monuments, such as pagodas in Kathmandu Durbar Square and 

Dharahara tower, were collapsed and killed many tourists. Since the Tribhuvan International Airport 

was closed immediately after the earthquake and a number of roads were suffered from landslides, 

international aid activities and field reconnaissance surveys were difficult to carry out.  

Remote sensing is recognized as an efficient tool to monitor a wide range of natural disasters by optical 

and radar sensors. Optical images can easily capture detailed ground surface information, but the 

approach is limited by weather conditions. In contrast, synthetic aperture radar (SAR) sensing is 

independent of weather and daylight conditions, and thus more suitable for damage mapping reliably 

and promptly. Due to remarkable improvements in radar sensors, high-resolution COSMO-SkyMed, 

TerraSAR-X and ALOS-2 (PALSAR-2) images are available with ground resolution of 1 to 5 m, 

providing detailed surface information. 

There has been many researches working on rapid damage assessment after natural disasters using SAR 

data. Interferometric analysis is one of the most powerful methods to detect crustal movements and also 

to investigate building damages (Stramondo et al., 2002; Michele et al., 2010; Ito et al., 2000; Yonezawa 

and Takeuchi, 2001). Matsuoka and Yamazaki (2004) performed a feasibility study on the 

backscattering characteristics of damaged areas in the 1995 Kobe, Japan earthquake, and developed an 

automated method to detect hard-hit areas using ERS SAR intensity images. The proposed method was 

also applied to Envisat ASAR images in the 2003 Bam, Iran earthquake (Matsuoka and Yamazaki, 

2005). Recently, several studies attempted to detect damage at the scale of a single building unit, using 

both high-resolution optical and SAR images (Brunner et al., 2010; Wang and Jin, 2012). 
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ALOS-2 (also called “Daichi-2” in Japanese) with an enhanced synthetic aperture radar (SAR) 

PALSAR-2 sensor is the only one L-band SAR satellite in the world, succeeding ALOS PALSAR. It 

contributes to cartography, regional observation, disaster monitoring and resource surveys. The satellite 

was launched on May 24, 2014, with the 4 days repeat period. There are three modes for the acquisition, 

the Spotlight mode with 1 to 3 m resolution, the Strip Map mode with 3 to 10 m resolution and the Scan 

SAR mode with 350 km or 490 km swath width. Both the single polarization and the combination of 

co- and cross-polarizations are available by the PALSAR-2 sensor. The improvement of the observation 

frequency and the spatial resolution allows more comprehensive monitoring of disasters. 

In this study, two pre- and one post-event pairs of ALOS-2 PALSAR-2 are used to estimate crustal 

movements and building damages caused by the Nepal earthquake. The crustal movements in a wide-

range are estimated by the InSAR analysis first. Then the damaged areas in the centre of Kathmandu are 

detected by three different indices. The normalized difference index for the coherence (NDCI) and that 

for the correlation coefficient (NDCOI) are calculated by the combination of the pre-event pair and the 

pre-, post-event pair. The Z factor, which includes both the difference and correlation coefficient 

between the pre- and post-event intensity data, is also introduced for damage detection. Finally, the 

accuracy of our results is verified by comparing with optical satellite images. 

2 STUDY AREA AND IMAGE DATA 

The study area focuses on the capital city, Kathmandu, as the red frame shown in Fig. 1(a). The location 

of the fault plane and the epicentre determined by USGS is also shown in Fig. 1(a) by the blue frame 

and the star mark (USGS, 2015). The background colours represent ShakeMap in terms of the Modified 

Mercalli intensity (MMI). Most of the target area is located in the strong seismic intensity more than VI. 

Two pre-event and one post-event PALSAR-2 data were used in study. The pre-event images were taken 

on October 4, 2014 and February 21, 2015 whereas the post-event image was taken on May 2, 2015, 

one week after the mainshock. The observation conditions of the three data were almost the same, the 

incident angle 35.3° at the centre of the images, with a heading of 344° clockwise from the north. All 

the data were captured with horizontal/horizontal (HH) and horizontal/vertical (HV) polarizations in the 

Fine Beam Dual (FBD) mode. The resolution was 7.2 m in the azimuth direction and 4.3 m in the slant 

range direction.  

The three imagery data were provided as the range and single-look azimuth compressed data with the 

processing level 1.1, which were represented by the complex I and Q channels to preserve the amplitude 

and phase information. Several pre-processing steps were carried out using ENVI/SARscape software. 

 

 
(a)                 (b) 

Fig. 1 Location of the study area around Kathmandu and the fault plane by USGS, overlapping on the MM intensity 

contour map (a); a colour composite of two pre-event and one post-event PALSAR-2 intensity images in the HH 

polarization, geocoded into UTM projection (b). 
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A multi-looking process was applied to the range direction, and then the resolution in the slant-range 

direction was changed to 8.6 m. A 90 m Shuttle Radar Topography Mission (SRTM) digital elevation 

model (DEM), was introduced to project the data to a WGS84 reference ellipsoid with a resampled 

square pixel size of 10 m. Radiometric calibration was also carried out to transform the amplitude data 

into the backscattering coefficient (sigma naught) values. After applying a speckle-noise reduction filter, 

a colour composite image of the two pre-event and one post-event intensity images in the HH 

polarization was generated and shown in Fig. 1(b). Significant changes in the backscattering intensity 

could be confirmed in the mountain area due to seasonal changes (vegetation and snow).  

The close-up of Kathmandu (the white square in Fig. 1(b)) is shown in Fig. 2 by the colour composites 

of the HH and HV polarizations. According to the different backscattering characteristics, vegetation 

areas could be identified by green colour whereas built-up areas show magenta colour. The Bagmati 

River, the runway of the Tribhuvan International Airport and the ground of Tundikhel show the lowest 

backscatter due to their smooth surfaces. Although several severe damages were reported in the city, it 

is difficult to identify them by visual inspection of these intensity images. 

 

3 ESTIMATION OF CRUSTAL MOVEMENTS 

InSAR analysis is a radar technique, which is used to generate maps of surface deformation or digital 

elevation, using the phase differences of the radar waves between two- or multi-temporal SAR data. An 

InSAR analysis was applied to the three complex-data products of PALSAR-2 using ENVI/SARscape 

software. First, an initial InSAR result was obtained using the two complex imagery data. The SRTM 

DEM was introduced to remove elevation and orbital effects from the initial result. In this stage, noises 

were removed by the Goldstein filter (Goldstein and Werner, 1998). Then the final interferogram 

including only the fringe caused by coseismic deformation was obtained. In addition, the coherence, 

which represents the quality of interferogram, was calculated with the value between 0 and 1. Finally, 

the final interferogram and coherence values were projected on a geo-referenced map. 

The temporal difference between the two pre-event data was 140 days whereas that of the second pre-

event and post-event data was 70 days. The spatial baseline distances of the two pairs were 178 m and 

119 m, respectively. The both pairs show high coherence. Excepting a subsidence area observed in the 

northwest part of Kathmandu, no other significant movement was seen in the pre-event interferogram. 

The subsidence was also observed from the co-event pair, which might be caused by the underground 

water-table change. The final interferogram for the co-event pair is shown in Fig. 3(a). The fringe caused 

by the coseismic deformation between –π and π was obtained from the areas with higher coherence than 

0.2. One cycle represents 11.8 cm displacement, which is a half of the wavelength of the L-band radar. 

Counting from the southwest, 12 cycles of fringes could be identified in the target areas, which 

represents the displacement of 1.4 m to the range direction. 

 

 
(a) Oct. 4, 2014       (b) Feb. 21, 2015      (c) May 2, 2015 

Fig. 2 Colour composites of the HH and HV polarizations for three different periods respectively. 
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An unwrapping step was carried out to connect discontinuous fringes into a continuous displacement. 

The fringes in the whole target area with higher coherence values than 0.25 were unwrapped by the 

Minimum Cost Flow method (Costantini, 1998). To remove the phase offset, ground control points 

(GCPs) were required after unwrapping. Normally, the locations and observed records of GPS stations 

are used as GCPs. However, there is no available GPS data in this area. Moreover the deformation 

occurred in the entire imaging area. Thus, only one point was assigned as the stable (fixed) reference 

point at the southwest corner of the SAR image. The displacements in the line-of-sight direction were 

obtained and shown in Fig. 3(b). Since the target area covers a half of the fault plane, the most parts 

showed the movements to the same direction, as forward to the sensor direction. The maximum value 

of the obtained displacements was 1.56 m, matching with the visual counting. The city area of 

Kathmandu is shown in the black frame, where the deformations were in the range from 0.5 m to 1.3 m. 

Since the displacements in Kathmandu are in the same direction, no significant surface rupture was 

expected in the area. 

4 DAMAGE DETECTION IN KATHMANDU CITY 

4.1 Normalized difference coherence index (NDCI) 

The pre- and the co-event coherence values were calculated in the slant range images from the complex 

data in the InSAR analysis. The pre-event coherence (γa) was obtained from the images taken on Oct. 4, 

2014 and Feb. 21, 2015, whereas the co-event coherence (γb) was obtained from the images taken on 

Feb. 21 and May 2, 2015. The pre- and co-event coherence values in Kathmandu City are shown in Fig. 

4(a-b). The coherence is influenced by the temporal distance, the baseline distance, the surface changes 

and noises. Although the baseline decorrelation can be calculated easily, the temporal decorrelation is 

difficult to calibrate. Since the both baseline distances were less than 200 m, the baseline decorrelation 

could be ignored in this study. However, the temporal distance of the pre-event pair was twice of that of 

the co-event pair. Thus, the pre-event coherence showed lower values in most parts of the built-up area. 

To estimate an accurate decrease in coherence caused by the earthquake, a normalized difference 

coherence index (NDCI) was calculated by Eq. (1) and shown in Fig. 5(a). 

ba

ba
NDCI








                  (1) 

where, < > represents a smoothing window with 7×7 pixels. 

 
(a)                      (b)  

Fig. 3 Fringe caused due to coseismic deformation obtained by removing orbit fringe, topographic fringe and 

noises from the initial interferogram (a); the displacements in the line-of-sight direction, detected by unwrapping 

the fringes obtained from the InSAR analysis (b). 
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Since the pre-event coherence is lower than the co-event one, the most of the area show negative values. 

Only several damaged areas show positive values due significant changes caused by the earthquake. 

However, two largest changed areas in the southeast and the northwest are due to the change of 

vegetation. To remove these errors in damage detection, a mask was applied based on the pre-event 

coherence. The areas with higher coherence than 0.5 were extracted as built-up ones whereas the others 

were considered as vegetation and masked from the NDCI values. Then the positive NDCI pixels were 

extracted as building damages. The pixels with higher value than 0.1 were extracted and grouped into 

objects. Considering the smoothing window size of 7×7 pixels, the objects smaller than 64 pixels were 

removed as noises. The finally obtained damage map is shown in Fig. 4(c). An area of about 1.4 km2 

was extracted. Although the low pre-event coherence pixels have been masked, vegetation with high 

coherence before the earthquake still existed in the result. 

4.2 Normalized difference correlation index (NDCOI) and Z factor 

The changes of the correlation coefficient were also calculated to detect affected areas. Different from 

the coherence, the correlation coefficient was obtained from the ground range intensity images. The pre-

event correlation coefficient (Ca) was calculated from the sigma naught backscattering images on Oct. 

4, 2014 and Feb. 21, 2015, whereas the co-event coefficient (Cb) was calculated from the images on Feb. 

 
(a) pre-event coherence      (b) co-event coherence     (c) suspicious damaged areas 

Fig. 4 Pre- (a) and co-event (b) coherence obtained by InSAR analysis; the detected suspicious damaged areas 

using the positive NDCI values (c). 

 

 
(a) NDCI           (b) NDCOI           (c) Z factor 

Fig. 5 Three indices used for damage detection: NDCI (a), NDCOI (b) and Z factor (c), respectively. 
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21 and May 2, 2015. The co-event correlation is shown in Fig. 6(b) with high correlation. Due to the 

seasonal difference, the pre-event correlation also show lower values than the co-event one. The 

normalized difference correlation index (NDCOI) was obtained by Eq. (2) and shown in Fig. 5(b). Since 

the Ca and Cb were between -1.0 and 1.0, they were added 1 to move into the positive-value range, 

between 0 and 2. 

2
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CC

CC
NDCOI                  (2) 

Because the pre- and post-event correlation coefficients were similar, no significant changes was 

observed in the NDCOI map. However, the areas with positive values higher than 0.1 were extracted 

and grouped into objects.  

Since the PALSAR-2 data used in this study have two polarizations, an unsupervised classification was 

applied on the image taken on Feb. 2, 2015 to extract pre-event built-up areas. The image shown in Fig. 

3(b) was classified into 5 classes as shown Fig. 6(c). From the lowest to the highest backscatter, the 

classes are assigned as blue, cyan, green, yellow and red. The blue class represents the smooth surfaces 

such as airport runways or paddy fields. The cyan class represents vegetated areas with low grasses. 

Thus, only possible built-up areas were extracted using the three brightest classes. After applying this 

non-urban mask, the detected damaged areas are shown in Fig. 7(a) by blue polygons. 0.89 km2 areas 

were extracted, smaller than the result from the NDCI values. 

The present authors proposed a new index, the Z factor, for monitoring urban changes, using the 

difference and correlation coefficient (Liu and Yamazaki, 2015). This factor was also introduced in this 

study for damage detection. The Z factor for the image on Feb. 21 and May 2, 2015 was calculated by 

Eq. (3), using the difference and correlation coefficient shown in Fig. 6(a-b). When the weight of the 

correlation coefficient is assigned as 0.5, the Z factor is in the range between -0.5 and 1.5. A high value 

represents a high possibility of change. The obtained Z factor is shown in Fig. 5(c). 

Cw
D

D
Z 

max
                 (3) 

where D is the difference and C is the correlation coefficient,  |  | represents the absolute value, and w is 

the weight factor, which is 0.5 in this study. 

Comparing with the NDCI and NDCOI values, Z factor show higher value in the Tribhuvan International 

Airport and Tundikhel district. The same approach was carried out to detect the damaged areas using 

the Z factor. After applying the urban mask obtained by the classification, the areas with higher value 

than 0 were extracted and show in Fig. 7(a) by magenta polygons. A total of 2.60 km2 areas were 

 
(a) co-event difference    (b) co-event correlation coefficient  (c) unsupervised classification 

Fig. 6 Co-event difference (a) and co-event correlation (b) of backscattering coefficient (sigma naught) values 

and the result of unsupervised classification with five classes (c). 
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identified as suspicious damaged areas. 

To verify our results obtained from the three different indices, comparison of our results with optical 

satellite images was carried out. The pre- and post-event Pleiades satellite images were employed for 

this purpose. Airbus Defence and Space provided these data to support the International Charter and 

Copernicus Emergency Management Service. The pre-event image was acquired on November 29, 2014 

whereas the post-event one on April 27, 2015, two days after the mainshock. Fig. 7(b) show our results 

overlapping on the post-event Pleiades image around Tundikhel district, including famous Kathmandu 

Durbar Square and Dharahara tower. The result from the NDCOI value is smallest and covered with the 

result from the Z factor.  

A more detailed comparison was made for four selected areas shown in Fig. 8 using the pre- and post-

event Pleiades satellites and our extracted results. Location a is the Kathmandu Durbar Square. Four 
 

 
(a)                    (b)  

Fig. 7 Detected suspicious damaged areas using the positive NDCOI and Z-factor values (a); the extracted areas 

from three indices overlapping on the post-event Pleiades taken on April 27 ,2015 (b). 

 

 
(a)                      (b)  

 
(c)                      (d)  

Fig. 8 Comparisons of the obtained results by three indices and the pre- and post-event Pleiades optical images 

at four locations. (a-d) corresponds to the location a-d shown in Fig. 7 (b). 
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pagodas were completely collapsed in the southwest part of the square. Comparing with our result, the 

NDCI detected two of the collapsed pagodas. However, the pagoda enclosed by surrounding houses 

could not be detected. For the extracted area from the Z factor, some debris could be confirmed by 

comparing the pre- and post-event images although the building was still standing. For the location b, 

only the NDCI could detect collapsed buildings. Dharahara tower at the location c, was detected by all 

the indices. For the location d, about a half of buildings were collapsed. However, only the NDCOI and 

Z factor could detect as damage. Considering these results, the combination of the NDCI and NDCOI 

would be powerful for detecting affected areas with less false alarm. 

5 CONCLUSIONS 

The crustal movements and building damages caused by the 2015 Gorkha, Nepal earthquake were 

detected using two pre-event and one post-event ALOS-2 PALSAR-2 radar data. The geodetic 

deformation was estimated by the InSAR analysis using the phase information. Displacements of more 

than 1.5 m to the line-of -sight of the SAR observation were obtained by unwrapping the obtained 

coseismic fringes. However the deformation was distributed larger than the imaging area. Thus only the 

relative displacements could be estimated by the InSAR analysis. 

The normalized difference coherence and correlation indices, and the Z-factor were used to detect the 

damaged areas in Kathmandu. Although vegetation and other non-urban areas were masked for each 

index before the detection, false alarms due to seasonal changes of vegetation could not be removed 

completely. Comparing with the Pleiades optical images, all the indices show the capability for the 

damage detection. However, there are many omissions if only applying one of those indices. 
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