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ABSTRACT: A new style base isolation device, which is called 3-dimensional isolation 
bearing (3DIB), is introduced in this paper. 3DIB is composed of lead rubber bearing 
(LRB) and disk spring bearing (DSB). In order to verify the horizontal and vertical 
performance of the 3DIB, several mechanical performance tests were conducted. The 
results show that the LRB is used for horizontal isolation and the DSB is for vertical 
isolation, and the horizontal properties and vertical properties of the 3DIB are determined 
by LRB and DSB, respectively. With high load capacity, variable stiffness and high 
damping, the 3DIB can be used to mitigate the horizontal and vertical seismic responses 
of base-isolated buildings. 
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1 INTRODUCTION 

Due to the huge earthquakes occurred frequently in the world, and lateral loads imposed on structures 
are the primary cause of damage in earthquakes, many base-isolated structures have been constructed 
to passively control seismic responses in most of the seismic countries(Kelly 1991, Naeim 1999, 
Asher 1995). In recent years sufficient strong-motion records from large magnitude earthquakes have 
been recorded by the seismographs, more and more records have larger peak ground acceleration in 
vertical ground motion than in horizontal ground motion acceleration, which indicate that vertical 
component of ground shaking should be paid more attention to avoid structural damage(Bommer 
2011, Niazi 1992, Ambraseys 2003). The horizontal force of an earthquake ground motion is 
sufficiently reduced by a base isolation system with lead rubber bearings or other isolators, but the 
vertical force is transmitted directly. The vertical component of ground shaking can also contribute to 
the destructive capacity of the motion in many situations. Therefore, development of the effective 
three-dimensional base-isolated system becomes more and more important. With adding the dampers 
or active components, the 3-dimensional base isolation systems proposed up to now are very complex 
and most of them are applied to the nuclear plants (Shimada 2004, Kashiwazaki 1999, Inoue 2004). 
Additional damper can increase the vertical damping of the three-dimensional isolation bearing, but 
also increase the vertical stiffness of bearing, which is not conducive to decrease the vertical seismic 
responses of the base-isolated system. A new 3-dimensional isolation bearing (3DIB), which is 
combined with lead rubber bearing (LRB) and disk spring bearing (DSB), is introduced in this paper 
(Zhao 2007). 

2  3DIB TEST MODEL 

The 3-dimensional isolation bearing (3DIB), proposed in this paper, is combined with lead rubber 
bearing (LRB) and disk spring bearing (DSB). LRB is effective to decrease seismic responses of 
building in horizontal directions. Disk spring is chosen to design DSB as the vertical isolator, because 
it has the following features (Almen 1936).  

1. The restoring force characteristics of the disk spring show nonlinearity.  

2. The effect of the friction becomes remarkable when large number of disk springs stacked (Niepage 
1984).  
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