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ABSTRACT: Currently there is still a lack of multi-directional earthquake loading 
simulations due to the high cost and setup complexity. However many structural failures 
are caused by the combined effect of multi-directional loading. In addition, there is no 
definitive guidance on the effects of different displacement tracking objectives on the 
results of multi-directional physical earthquake simulations. This study tested a post-
tensioned rectangular rocking concrete column with externally mounted energy 
dissipators pseudodynamically subjected to simultaneous biaxial loading, emulating 
bidirectional earthquake ground motion. The experiments used different displacement 
tracking strategies and found that particular tracking strategies gave rise to additional 
plastic deformations of the specimen and consequently resulted in appreciable differences 
in the time history predictions both in amplitude and phase lag. The experiments also 
revealed a design deficiency of the externally mounted energy dissipators. The dissipators 
failed prematurely under buckling during bidirectional loading, a phenomenon that has 
been missed in previous earthquake simulations. 

1 INTRODUCTION 

To date, most experimental seismic simulations only consider uniaxial load action along the principal 
axes of a specimen. However earthquake loading is multi-directional in nature and most often occur at 
an oblique angle to a structure’s principal axes. Even when considering unidirectional earthquake 
excitation only, torsional responses should be expected since most structures are irregular. The 
importance of including multi-axial effect is further highlighted by the Canterbury Earthquakes 
experience where many structural failures were attributed to the combined effect of multi-directional 
loading. Therefore, additional research effort considering multi-axial earthquake load is needed to 
understand the complex coupled structural responses particularly during inelastic excursions, where 
stiffness degradation in one axis can significantly affect the same parameter in the other. 

1.1 Test specimen and setup 

This study conducted biaxial pseudodynamic (PSD) tests on a rocking column. The test specimen was 
a free-standing concrete column with unbonded post-tensioning (PT) bars and replaceable, externally 
mounted dissipators (EMD) made from mild steel bars. The PT bars enabled controlled rocking 
behaviour and the replaceable mild steel bars provided dependable energy dissipations capability 
during rocking. The structural system was inspired by the PRecast Seismic Structural System 
(PRESSS) technology which ensured protection against significant structural damage even after a 
major earthquake event (Priestley, Sritharan et al. 1999). The Alan MacDiarmid building in Victoria 
University of Wellington, shown in Figure 1 is the first building in New Zealand to adopt such system 
(BBR Contech 2011).  

The low-damage behaviour of an unbonded PT column enables the specimen to be reused for multiple 
tests. It is worth mentioning that the test specimen in this series of experiments was similar to the 
specimens in a previous study by Marriott (2009). The column had a rectangular cross-section (490 × 
250 mm) and a cantilever height of 1600 mm. The column had 12 – D10 as longitudinal 
reinforcements and D10 transverse reinforcements spaced at 120 mm centers. All reinforcing bars 
were Grade 300 deformed bars. The column sat atop a concrete foundation block, and the EMD were 
bolted to the base of the column through a steel brackets. These dissipators were designed to provide 
energy dissipation as they cycled between tension and compression when the column displaced. The 
load to the column were applied through actuators in displacement-control mode, connected at right 
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angles at the top of the column by means of steel plates and four M25 threaded steel rods. A schematic 
drawing of the test setup is shown in  

Figure 2 and photographs of the actual test setup are shown in Figure 3. 

 

 
Figure 1 The Alan MacDiarmid building, Victoria University of Wellington (left), and close up of the EMD 

(right) (BBR Contech 2011) 

 

 
Figure 2 Elevation view of test setup, stronger axis face (left) and weaker axis face (right) 

 

 
a) 

 
b) 

Figure 3 Actual experiment setup, a) view from above and b) column base detailing 
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1.2 The pseudodynamic method 

The pseudodynamic (PSD) method subjects a specimen to a displacement history that is determined 
interactively, according to a numerical model of the system and the measured specimen response 
during the course of the test. This testing technique is particularly advantageous for seismic 
simulations as it allows dynamic and inertial effects to be replicated in the numerical model, hence 
allowing otherwise very large dynamic forces on the physical specimens to be applied at a slower rate 
or pseudostatically. A description of the basic algorithm is available in Shing and Mahin (1984). 

In a 2D application, the column displaces in two transverse directions at the top. The principal axes of 
the cross section are no longer aligned with the actuator axes due to finite actuator lengths (Figure 4). 
Therefore an iterative procedure had been developed to account for this geometric error during control 
signals generation as well as feedback signals processing. 

 

 
Figure 4 Geometric error in displaced column 

 

1.3 Displacement tracking strategies  

To date, the effect of different displacement tracking strategies on the results of multi-directional 
physical earthquake simulations is yet to be assessed. Previous studies have shown that different load 
paths lead to different inelastic load-deformation behaviour of structures (Bousias, Verzeletti et al. 
1995), and consequently different energy dissipation capability which may not always be 
proportionally related to the ultimate strength capacity for a given displacement path (Watanabe, 
Sugiura et al. 2000, Qiu, Li et al. 2002).  

In the current research, the rocking column was subjected to three patterns of displacement paths in x- 
and y- directions during each time step according to the numerical model in the computer. Referring to 
Figure 5, the experiments adopted a “staggering” pattern among infinite possible paths to move the 
column from Point 1 to Point 2. In the first pattern (denoted I in Figure 5), the column was displaced 
along the stronger axis (henceforth called the X-axis) while it was held steady in the weaker axis 
(henceforth called the Y-axis). Afterwards, the column was displaced along the Y-axis until Point 2 
was reached while the X-axis position was held steady. The second pattern (denoted II) was similar to 
Pattern I except with the order of loading reversed. The third pattern (denoted III) is the conventional 
path where the column was displaced along both axes simultaneously. Using different displacement 
tracking for the same earthquake record in a PSD test is analogous to subjecting the structure to a 
different load path; since the displacement amplitudes the structure is reaching are expected to be the 
same, the path the structure takes to reach these amplitudes determine how much energy is dissipated.    

1.4 Experiment regime 

The experiment adopted earthquake records that were selected and scaled based on the 
NZS1170.5:2005 (Standards New Zealand 2004) guidelines for time-history analyses. These records 
represented the seismicity of the greater Wellington region (Oyarzo-Vera, McVerry et al. 2012). 

O

Actuator

Actuator

Error Δy

Error Δx

Target Δy=0

Target Δx



4 

Figure 6 shows the site-specific target spectra of the assumed region, as well as the pseudo-spectral 
acceleration (PSA) of the scaled earthquake records. The dashed lines indicate the range of periods 
whose PSAs were scaled according to the procedure in NZS1170.5:2005. 

 
Figure 5 Different displacement paths to a target displacement 

 

 
Figure 6 PSA of the family of earthquake records used in the testing regime 

 

 

 

a) b) 

Figure 7 Buckled EMD, a) during experiment and b) after experiment 
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2 RESULTS AND DISCUSSIONS 

2.1 EMD failure 

There are two factors that presumably contributed to the failure of the EMD. The first is the the biaxial 
loading at the column led to large bending actions on the EMDs. As the EMD motions were no longer 
predominantly axial, on compression cycles following tension cycles, concentrated rotation developed 
at the junctions where the anti-buckling grouted sleeve terminated. This resulted in significant 
eccentricity for the axial force and premature failure of the EMD. Figure 7 shows a buckled EMD, 
highlighting that concentrated rotation occurred around the end of the milled-down portion. Although 
it has been shown through component testing and uniaxial cyclic assemblage test that the EMD 
yielded dependably in tension and compression (Marriott 2009), full performance under bidirectional 
earthquake attack was evidently nulled. Preliminary analyses of the experiment results indicated that 
the EMD failed at about 50% of the intended capacity. It further highlights the importance of 
considering the effect of multi-axial load on such system.  

2.2 PSD test results 

This section presents the PSD test result from four earthquake records simulations. The PSD tests 
adopted a timescale factor of 50 such that a 30-second earthquake record would have taken 25 
minutes. Accordingly, the time axes in the following time history plots have been adjusted to reflect 
the timescale of the actual earthquake. Figure 8 shows the displacement time history and force 
displacement response of the column from the 1999 Duzce earthquake simulation. Figure 8a) and c) 
highlights noticeable differences in amplitude and phase of the column displacements in both axes due 
to different displacement tracking strategies. It should be noted that a classical flag-shaped hysteretic 
curves did not develop as seen in Figure 8b) and d), along with appreciable residual drifts. This was in 
part caused by a large crack at one corner of the column and therefore sliding, opening and closing of 
this crack dominated the hysteretic behaviour. The figure also highlights the poor performance of the 
EMD due to buckling and slippage. Due to space limitation, other time histories and force-
displacement results are not shown but similar trends are also observed.  

a)   c)   

 

b)  d)   

Figure 8 Displacement time history and force-displacement response of the column from the 1999 Duzce 

0 2 4 6 8 10 12 14 16 18 20
-40

-30

-20

-10

0

10

20

30

40

Time(sec)

D
is

pl
ac

em
en

t(m
m

)

 

 

Path 1
Path 2
Path 3

0 2 4 6 8 10 12 14 16 18 20
-20

-15

-10

-5

0

5

10

15

20

Time(sec)

D
is

pl
ac

em
en

t(m
m

)

 

 

Path 1
Path 2
Path 3

-40 -30 -20 -10 0 10 20 30 40
-25

-20

-15

-10

-5

0

5

10

15

20

Displacement (mm)

Fo
rc

e 
(k

N
)

 

 

Path I
Path II
Path III

-20 -15 -10 -5 0 5 10 15 20
-40

-30

-20

-10

0

10

20

30

40

Displacement (mm)

Fo
rc

e 
(k

N
)

 

 

Path I
Path II
Path III



6 

earthquake simulation for the weak (a and b) and strong (c and d) axes 

The tracking strategy Path III can be thought as the ideal solution in the absence of true reference 
result from full dynamic tests (e.g. shake-table test), or idealised numerical simulation,  considering 
the column will take the shortest deflection path in real earthquake event. For each tracking strategy, 
the positive and negative amplitudes attained at every half-cycle in the displacement time history can 
be identified, such as shown in Figure 9, from the result of 1999 Duzce earthquake simulation. The 
amplitudes attained by tracking strategies Path I and Path II can then be quantified in term of their 
differences, relative to Path III. Mathematically, these amplitude differences can be represented in a 
normalised form ε defined as, 

i III

i III

A A
A

ε −
=  (1) 

In Equation 1, A = amplitude and i = I or II e.g. Ai indicates amplitudes attained during Path i test. 
Consequently any negative values ε indicate that the attained amplitudes in Path I or II are smaller 
than the reference value Path III, while positive values indicate the opposite. Note that although Figure 
9a) and b) only show part of the displacement amplitudes of the complete time history for clarity 
purpose,  Equation 1 takes into account all displacement amplitudes throughout the response histories. 

Collating the normalised amplitude errors from each cycle in the earthquake time history, Figure 10-
13 plot the distributions of these differences as a density function, fX(x). In each plot, a solid black line 
parallel with the vertical axis is drawn at zero ε. The peak (median) of the density function will 
coincide with this line if different displacement paths produced the same displacement amplitudes on 
average. It is interesting to note that the median values of ε across all results are mostly positive, i.e. 
the amplitudes at peaks of each cycle attained via Path I and II are generally larger than Path III. Note 
that during Path I or Path II tests, the column displaced a greater distance compared to Path III, 
providing greater opportunity for accumulated plastic deformation in the column. Therefore it is likely 
that the column developed a lower restoring force which in turn led to larger displacement amplitudes 
in the PSD algorithm.  

 
a) 

 
b) 

Figure 9 Displacement amplitudes attained during the 1999 Duzce earthquake (Duzce,Turkey) simulation, a) X-
axis and b) Y-axis 
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a)  

  
b)  

Figure 10 Distribution of normalised amplitude errors from 1979 Imperial Valley earthquake simulation, a) X-
axis and b) Y-axis 

 
a) 

 
b) 

Figure 11 Distribution of normalised amplitude errors from 1999 Duzce earthquake (Duzce,Turkey) simulation, 
a) X-axis and b) Y-axis 

 
a) 

 
b) 

Figure 12 Distribution of normalised amplitudes errors from 1978 Tabas earthquake (Tabas, Iran) simulation, a) 
X-axis and b) Y-axis 
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a) 

 
b) 

Figure 13 Distribution of normalised amplitudes errors from 1999 Yarimca earthquake (Kocaeli, Turkey) 
simulation, a) X-axis and b) Y-axis 

3 CONCLUSION 

This study on a rocking column has shown that different displacement paths in bidirectional 
earthquake simulations led to different inelastic response as expected. This phenomenon occurs in 
quasi-static tests as well as PSD simulations. Three displacement tracking strategies were employed 
and the resulting error distributions suggest that different displacement tracking strategies led to 
noticeable differences in the displacement amplitudes attained by the specimen. The experiments also 
exposed deficient performance of the externally mounted energy dissipators. While it has been missed 
during previous study, the experiments showed that the dissipators failed prematurely due to buckling 
under bidirectional loading. This phenomenon deserves further investigation through more bi-axial 
experiments.  
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