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ABSTRACT: The objective of this study is to investigate a practical method for damage 

evaluation which can be applied to large-scale seismic simulation targets over a wide area 

with a great number of structures. In order to realize reliable damage estimations based on 

numerical simulations, it is necessary not only to increase model accuracy, but also to 

introduce model uncertainty. Rosenblueth’s point estimate is one of the useful methods 

for damage evaluation that considers model uncertainty and requires only a small number 

of calculations. The point estimate method is based on a technique for numerical 

integration known as the Gaussian quadrature. It recovers moments of the targeted 

frequency distribution from only several evaluation points. The estimation accuracy may 

rise with an increase in the number of evaluation points; however, the number of points 

and the computational load are in a trade-off relation. This study examines the influence 

of evaluation points on the accuracy in estimating the statistical values of seismic 

responses and damage probability. A case study indicates that the amount of 

improvement in estimation accuracy gradually decreases with increases in the evaluation 

points. This suggests that increases in the number of evaluation points can work 

effectively on damage evaluations in large-scale simulations, but only up to a limited 

number of increases. 

1 INTRODUCTION 

Among the several approaches available for damage estimation, the representative one is based on 

structural-damage statistics, accumulating past data on seismic hazards and applying damage curves or 

fragility curves. Another approach is based on a large-scale numerical simulation. Recent sophisticated 

computational science and technology allows for such a simulation, which can perform elaborate 

calculations for dealing with a vast amount of information on the seismic source, the underground 

structures, and the various structures. At the time of a strong earthquake, if the extent of the damage to 

a large area can be determined on a real-time basis with a high degree of accuracy, this will lead to 

prompt action against disasters. The Integrated Earthquake Simulator (IES) has been developed for 

this purpose (e.g., Hori and Ichimura, 2008); it includes a system for seismic response analyses which 

can target entire cities.  

Modelling approaches always include assumptions and inaccuracies to some extent. Therefore, it is 

desirable that such model uncertainty be considered. On the other hand, damage evaluations that 

consider model uncertainty generally involve numerous calculations, in order to obtain accurate 

frequency distributions (FDs) of the building responses; and thus, they are inadequate for large-scale 

simulations. Point estimate (e.g., Rosenblueth, 1975) is one of the useful methods for overcoming this 

disadvantage, because it requires only a small number of calculations. Although the estimation 

accuracy of FDs probably rises with an increase in the number of evaluation points, the number of 

points and the computational load are in a trade-off relation. To examine the effect of the evaluation 

points on estimation accuracy, the theory of point estimates is firstly reviewed focusing on the 

evaluation points and the accuracy in recovering the statistical values of the original FD. Next, the 
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statistical values of the seismic response are estimated by the point estimate (PE) method for a large 

number of buildings, and the changes in characteristics of the statistical values are examined with the 

evaluation points. Finally, the structural damage is evaluated based on the exceedance probability (EP) 

calculated from the cumulative distribution (CD) of the seismic responses, introducing the Gram-

Charlier expansion as the probability density function (PDF) and utilizing the statistical values 

obtained from the PE. Employing the Monte Carlo method (MCM) as a reference, the number of 

evaluation points required to improve the accuracy of the seismic damage evaluation is discussed. 

2 POINT ESTIMATE 

2.1 Evaluation points for Rosenblueth’s point estimate 

Let X and Y indicate an uncertain building property and the corresponding response of the building, 

respectively. Then, Y is a function of X, Y=g(X), where X is a random variable with a probability 

density function, p(X). Function g(X) is unknown, but can be approximated by polynomials.  

Rosenblueth’s point estimate approximates the low-order moments of Y using some evaluation points 

Xi and corresponding weights Pi, as follows: 
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where m is the number of evaluation points. Pi and Xi are selected to recover the statistics of X. For 

instance, in the case of a two-point estimate, Pi and Xi (i=1, 2) can be obtained from the following four 

equations: 
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where μX, σX, and νX are the mean, the standard deviation, and the skewness of px(X), respectively. 

Since Rosenblueth’s explanation for Xi and Pi was not detailed and seems to be intuitive, Christian et 

al. (1999) explained the method by introducing the following numerical integration technique known 

as the Gaussian quadrature: 
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They revealed that the Xi and Pi of Rosenblueth’s method correspond to integration point xi and 

corresponding weight pi, respectively, of the Gaussian quadrature. With respect to the necessity for Eq. 

(2), as the condition for recovering the moments of Y, Miller et al.’s method is also easy to understand 

(Miller et al., 1983). Equation (3) has equality when the order of polynomial g(x) is less than or equal 

to 2m-1 and can be rewritten as  
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This equation clearly satisfies all coefficients ak if we make the moments of discrete point xi equal the 

moments of the original distribution. Thus, the criterion for Eq. (4) becomes 
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Since the left side of Eq. (4) is E[g(x)] itself, Eqs. (4) and (5) indicate that when integration points xi 

are selected to recover the moments of x, μy =E[g(x)] can be obtained as the expectation value using 

only less than or equal to 2m-1 of the xi and the corresponding weights pi.  

Furthermore, PE recovers the high-order moments of a polynomial, Y=g(X), using m integration points 

of the Gaussian quadrature. This can be understood from the approach reviewed in the next section.  
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2.2 Number of evaluation points and accuracy of recovered moments 

In order to understand the relation between the number of evaluation points and the accuracy of the 

recovered statistics in more detail, we review a part of Hong (1998)’s explanation. The kth-order 

central moment of X is 
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where μx is the mean of x. Let the polynomial g(x) represent the Taylor expansion around μx as   
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Then, the expected value for Y is represented by 
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Using the ith evaluation point, xi, written by xixix   (i=1,2,…), and considering Eq. (7), the left 

side of Eq. (1) for k = 1 is given by 
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To approximate the exact mean value for μy by Eq. (9), we can match the first 2m terms on the right 

side of Eqs. (8) and (9).  
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From the above 2m equations for each i, unknown parameters pk and ξk (k=1,...,m) can be obtained. 

Then, the first-order moment of Y is given from Eqs. (8) and (9) as 
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If g(x) is the (2m-1)th-order polynomial, g (i)(μx) is equal to zero and PE gives an exact solution for μx. 

In addition, Eq. (11) indicates that the estimation error will increase with standard deviation σx for a 

larger-order polynomial. The second-order moment is given by  
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Similarly, the nth-order moment includes the term with the nth power of g (i)(μx). Therefore, the exact 

solution for the nth-order moment can be obtained if g(x) is less than the (2m/n)th-order. Thus, if the 

function of interest, g(x), has a complex form, an increase in evaluation points Xi is effective for 

recovering the higher moments of Y. In addition, care must be taken as the estimation accuracy for the 

second-order central moment, 222 ][ YY YE   , may become less than that for the second-order 

moment, E[Y2], when the estimation accuracy for μY decreases.  

3 DAMAGE EVALUATION USING POINT ESTIMATE 

PE recovers the statistical values for Y, as described in a previous section. However, the information is 
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not enough to evaluate the damage probability. Therefore, this study employs a PDF which can 

approximate the FD of Y using the high-order statistics obtained by PE. 

This study applies the Gaussian distribution to the PDF of stochastic variable X in the numerical study. 

Hence, the Gaussian-related distribution function is applied as the PDF with respect to Y. There are 

representative PDFs, such as the normal or the lognormal distributions. However, they use only the 

first two-order central moments (mean and variance). To take higher-order moments into account, the 

Gram-Charlier expansion (GCE) is applied here. Nakajima and Morikawa (2009) proposed the use of 

GCE as the PDF of the building response using statistics obtained by three point estimates, and 

showed the applicability of GCE with PE to non-linear problems. GCE is represented by 
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where   represents the normal probability distribution and hk(y) is the kth order Hermite polynomial 

which can evaluate a shift from the normal probability distribution. 
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where cn is the nth-order cumulant which can be determined from the nth-order moment, mn, given as 

the expected value of function p(y). 
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From an engineering viewpoint, this study takes the fourth-order Hermite polynominal in Eq. (13), 

that is, only h3(y) and h4(y) are considered. Then, moment mn,  n 4, is employed. 

The EP for a value of θ for the ith building can be evaluated from the CD of p(y) as follows:  
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To validate the estimation accuracy of this method using PE, the Monte Carlo method (MCM) is also 

employed as a reference and the results are compared. 

4 APPLICATION TO LARGE-SCALE SEISMIC SIMULATION  

4.1 Problem settings 

Using the IES code, nonlinear analyses (time interval of 0.0005 s) by the multi-degree-of-freedom 

(MDOF) shear spring model were performed by targeting 7,348 buildings, the number of stories (Ns) 

of each one being from one to 37. Inputting the El Centro earthquake to a depth of -50 m from the 

ground surface, the acceleration waves on the ground surface are calculated by a one-dimensional 

amplification analysis considering the ground structure under each building. Rayleigh damping is 

applied as the viscous damping matrix, considering a damping factor of 2.0 or 3.0% for the first and 

second modes. The damping factor is selected according to the building classification. 

4.2 Model uncertainty and analytical case 

Since the intention of this study is to evaluate a method for damage evaluation using PE itself, rather 

than a damage evaluation of a specified area, the simplest building model is used. Mass and story 

stiffness are set to be independent of the story, and story stiffness is modeled by a normal bilinear 

model. The bilinear model has strong non-linearity and it probably leads the shape of g(X) to be more 

complex than general models, e.g., the tri-linear model. Model uncertainty is given to yield story drift 

angle θy and is set at p(X) so as to follow the Gaussian distribution φ(μx, σx), as shown in Fig. 1. 

Analytical cases are prepared, as shown in Table 1, for each set of μx and coefficient of variation 

(COV) for θy. (The standard deviation is σx=μxCOV.) The damage to the buildings in this study is 

evaluated by a maximum story drift angle, θmax. 
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         (a) Stiffness model with stochastic variable                         (b) PDF of θy  

Figure 1. Uncertainty of building properties 

Table 1. Analytical cases 

 

Property 

of θy 

Case 

A1 

Case 

A2 

Case 

A3 

Case 

B1 

Case 

B2 

Case 

B3 

Case 

C1 

Case 

C2 

Case 

C3 

mean μX 1/200 1/200 1/200 1/150 1/150 1/150 1/100 1/100 1/100 

COV 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 

*COV: Coefficient of variation 

4.3 Setting of evaluation points 

To examine the influence of the number of evaluation points on the damage estimation, we apply 3, 

5,…, 15 evaluation points to each calculation case. When p(X=θy) is normal distribution φ(0, σX), Eq. 

(3) results in the Gauss-Hermite quadrature after an integral transformation. Then, the table of 

integration points xi and the corresponding weight pi for i  20 for the Gauss-Hermite quadrature 

provided by Salzer and Capuano (1952) can be used. Since xi > 0 is necessary in this study, xi is reset 

to a minimum value of 0.002 if the xi is equal to or less than zero. Hereafter, each point estimate is 

represented by “3PE”, “5PE”,…, “15PE”. 

4.4 Estimation of statistics and errors 

As for the results for PE, the general properties of θmax obtained by MCM are shown in Table 2 for 

each case. Here, subscript k indicates the building number (k =1, … , 7348), and subscripts _ave and 

_std represent the average and the standard deviations for all the buildings, respectively. For reference, 

the level of ductility calculated by μYk_ave /μX is noted in brackets. The table indicates that θmax tends to 

generally be “Case C > Case B > Case A”. In addition, the standard deviation becomes large with 

COV, except for Cases B2 and B3.   

Table 2. General properties of frequency distribution of θmax for 7348 buildings 

Properties  
Case 

A1 

Case 

A2 

Case 

A3 

Case 

B1 

Case 

B2 

Case 

B3 

Case 

C1 

Case 

C2 

Case 

C3 

μYk_ave 
0.020 

(4.0) 

0.019 

(3.8) 

0.019 

(3.8) 

0.022 

(4.4) 

0.022 

(4.4) 

0.019 

(3.8) 

0.028 

(5.6) 

0.028 

(5.6) 

0.027 

(5.4) 

μYk_std 0.0128 0.0123 0.0119 0.0123 0.0123 0.0123 0.0147 0.0141 0.0136 
σYk_ave 0.0027 0.0035 0.0043 0.0031 0.0044 0.0035 0.0040 0.0053 0.0062 
σYk_std 0.0016 0.0019 0.0022 0.0018 0.0023 0.0019 0.0025 0.0029 0.0032 

*(      ): the value is the average μYk_ave divided by μX 

As an example of the results, the accuracy of the first three-order moments (m1, m2, and m3 ), estimated 

by PE, are shown in Fig. 2. The figure presents a comparison between 3PE and 9PE for Case C1. 

Totally, the moments for PE approximately correspond to those for MCM, and their correlations are 

high. The minimum correlation coefficients among the nine cases are 0.973 and 0.995 for 3PE and 

9PE, respectively, as shown in Table 3. Although the accuracy of the moment estimation for 9PE is 

better than that for 3PE, there seems to be no large difference.   

In contrast, the accuracy of the second-order central moment σY for 3PE, 7PE, and 13PE is shown in 

Fig. 3. As noted in section 2.2 (Eqs. (12) and (13)), the accuracy of σY is not high because the small 

µx µx-σx µx+σx 

p(X=θy) 
 

Yield story  
drift angle θy 

Qy = W・CB 

δy = HS・θy 

Story shear force Q 
 

Deformation  
δ 

Uncertainty of θy is equal 

to uncertainty of 

 elastic natural period. 

Qy  : Yield shear force 
δy   : Yield deformation 
W   : Total building weight  
CB : Base shear coefficient 

         (CB =0.4) 
HS : Story height 
θy   : Yield story drift angle 
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estimation errors for m1 and m2 directly influence it. Therefore, the correlation coefficient for σY 

becomes less than that for the moments, as shown in Table 3. Not only the moments, but also the 

central moments are used to estimate PDF by GC, and it is desirable that the accuracy of both be as 

high as possible. However, the effectiveness of the increase in evaluation points is also clear according 

to Fig. 3. Figure 4 shows the changes in error in the estimation of statistics μY and σY with the number 

of evaluation points. The figure indicates that with a greater number of evaluation points, the accuracy 

of the estimation of the statistics will be higher. In addition, the change seems to be exponential-like 

and approximately becomes small from 7PE or 9PE. This also indicates that the effectiveness of 

increasing the number of evaluation points is high around seven or nine points in this study. 

 

 

 

 

 

 

 

 

Figure 2. Comparison of estimation accuracy of moments of θmaxi between two kinds of PEs (Case C1): 

(a) m1, (b) m2, and (c) m3 

 

 

 

 

 

 

 

 

Figure 3. Estimation accuracy of second-order central moment of θmaxi for three kinds of PEs (Case 

C1): (a) 3PE, (b) 7PE, and (c) 11PE 

Table 3. Minimum correlation coefficient among nine cases 

PE m1 m2 m3 m4 σY 

3PE 0.973 0.995 0.994 0.991 0.731 

9PE 0.995 0.999 0.999 0.999 0.869 

 

 

 

 

 

 

 

 

Figure 4. Error in estimation of statistics: (a) μyi and (b) σyi  

 

 

 

 

 

(a) (b) 

(a) (b) (c) 

(a) (b) (c) 
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4.5 Estimation of exceedance probability and accuracy 

Using the statistics obtained in the previous section, EPθ,i, which represents a probability and exceeds a 

targeted maximum story drift angle θ for the i-th building, is calculated from Eq. (17) for θ =1/100 and 

1/50. Hereafter, “GC3”, “GC5”,…, “GC15” represent the results obtained from the Gram-Charlier 

expansions for 3PE, 5PE,…, 15PE, respectively. Figures 5 and 6 show the comparison of EP1/100,i and 

EP1/50,i for Case A1. From these figures, the estimation accuracy of the exceedance probability greatly 

improves with an increase in the number of evaluation points for both EP1/100,i and EP1/50,i in this case.  

The rate which indicates that the estimation error does not exceed 10% is calculated for all cases by 

)50/1,100/1(%10,%10,    berrerr NNR  

where Nb is the number of buildings (Nb=7348) and %10, errN  is the number of i which satisfies the 

following inequalities for each θ. 

NbiforMCMEPGCEPMCMEP iii ,...,11.0)(,)(,1.0)(,    

Figure 7 presents the changes in rates R1/100,err≦10% and R1/50,err≦10% with the number of evaluation 

points. Most cases show that the accuracy of the damage evaluation rises with an increase in the 

number of evaluation points. However, the amount of improvement in accuracy also falls with an 

increase in the number of evaluation points. The tendency is likely to become stronger when the 

estimation accuracy is extremely low. These results indicate that an increase in the number of 

evaluation points of only several numbers will effectively bring about high estimation accuracy for the 

damage evaluations based on point estimates with the Gram-Charlier expansion.  

 

  

 

 

 

 

Figure 5. Comparison of exceedance probabilities EP1/100,i (Case A1 ): (a) GC3, (b) GC7, and (c) GC11 

 

 

 

 

 

 

Figure 6. Comparison of exceedance probabilities EP1/50,i (Case A1 ): (a) GC3, (b) GC7, and (c) GC11 

(a) (b) (c) 

(a) (b) (c) 
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CaseA1 

 

 

 

 

 

 

 

 

 

Figure 7. Rate indicates that estimation error does not exceed 10%: (a) EP1/100 and (b) EP1/50 

5 CONCLUDING REMARKS 

As a practical method for the damage estimation of building structures with model uncertainty, based 

on a large-scale numerical simulation, a damage-evaluation method, founded on point estimates using 

the Gram-Charlier expansion, was introduced. The influence of the evaluation points on the accuracy 

in estimating the statistical values of seismic responses and damage probability was examined. In the 

present simulation cases, the amount of improvement in estimation accuracy gradually decreased with 

an increase in the number of evaluation points. This suggests that a limited number of increases in 

evaluation points is effective for damage evaluations in large-scale simulations.  

High accuracy in estimations may be realized by smaller numbers of evaluation points if a more realis-

tic model and its uncertainty are employed. On the other hand, further studies are needed to address 

problems with several variables; not using so many evaluation points may still be disadvantageous. 

The effectiveness of the selection of evaluation points needs to be examined not only by focusing on 

the response properties, but also by considering the calculation load using a more realistic model and 

uncertainty. 
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