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Abstract 
 

Nonlinear static (pushover) methods have become increasingly popular in seismic analysis as 

they allow the explicitly consideration of nonlinear structural behaviour, while retaining the 

simplicity of the static analysis. Even though significant advances of pushover methods have 

occurred in recent years, the applicability of such methods for unreinforced masonry 

buildings with flexible diaphragms has remained relatively unexplored.  

This paper investigates the accuracies of various pushover methods in predicting the peak 

seismic response of buildings with flexible diaphragms. The peak displacement demands of 

simple two-degrees-of-freedom systems, considered to represent the basic characteristics of 

structures with flexible diaphragms, are estimated using the N2, modal pushover analysis and 

adaptive capacity spectrum method, and compared against time-history analyses.  

The results show that pushover methods generally become less reliable when the diaphragm 

is made flexible. However, the modal pushover analysis appears to give better results and to 

be the most promising for the development of a pushover method suitable for masonry 

buildings with flexible diaphragms. 

 

 

Keywords: Nonlinear static method, pushover analysis, flexible diaphragm 

 

1. INTRODUCTION 

 

The nonlinear static methods (also referred to as pushover methods) have become popular in 

practice as they allow the explicit consideration of the nonlinear structural behaviour without 

the need to define the often complex hysteretic characteristics of the structural elements. In 

addition, the method retains the simplicity of the static analysis, and the code-defined hazard 

spectra may be used as the “loading”. The initial development of the nonlinear static methods 

focused on low-rise regular (or planar) buildings, in which the inelastic response is 

approximated by an equivalent single-degree-of-freedom (SDOF) system as obtained from 

static pushover analysis. Subsequent developments saw the inclusion of higher-mode effects 
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for tall structures (Sasaki et al., 1998; Chopra and Goel, 2002, Sucuoğlu and Günay, 2010), 

adaptive pushover methods to account for the effects of member yielding (Bracci et al., 1997; 

Antoniou and Pinho, 2004) and the inclusion of torsional response (Chopra and Goel, 2004; 

Fajfar et al., 2005; Kaatsız and Sucuoğlu 2014). Importantly, all methods were developed for 

buildings in which the floor and roof diaphragms remained rigid in their own plane. In recent 

years, they were also adapted to the seismic analysis of bridges in the transverse direction, in 

which the deck (or diaphragm) is relatively flexible (Casarotti and Pinho, 2007; Isaković et 

al., 2008).  

Despite the aforementioned improvements, in common practice the pushover method for 

unreinforced masonry buildings is the conventional procedure in which the SDOF response is 

essentially assumed. Problems arise when one uses the conventional method in assessing 

existing heritage buildings, which often contain flexible timber floor and roof diaphragms. 

Due to the in-plane flexibility of the diaphragms, the structural response can contain multiple 

dominant modes, which invalidates the SDOF behaviour assumed in the conventional 

method. Therefore, there is a need to investigate whether more advanced pushover methods 

can be used to accurately estimate the peak seismic demands in buildings with flexible 

diaphragms. This issue is explored using simple two-degrees-of-freedom systems, by 

comparing the displacement ductility demands predicted by various pushover methods 

against the “actual” responses obtained from nonlinear time-history analyses. 

 

2. OVERVIEW OF METHODS 

 

Three different pushover methods are evaluated. The first is the N2 method (Fajfar, 2000) 

contained in Eurocode 8 (herein referred to as the conventional method). The second is the 

Modal Pushover Analysis (MPA) developed by Chopra and Goel (2002), and the last is a 

modified version of the Adaptive Capacity Spectrum Method (ACSM) proposed by Casarotti 

and Pinho (2007) in association with a displacement-based adaptive pushover procedure 

(Antoniou and Pinho, 2004). A brief discussion of these methods is given below. Readers are 

referred to the cited works for the development and the theoretical background of the 

methods. 

 

2.1. N2 method 

 

The N2 method consists of five main steps: 

1. Develop a nonlinear model of the structure and define the earthquake input in terms 

of a response spectrum. 

2. Conduct a pushover analysis of the model, with an invariant lateral force 

distribution proportional to 𝒎𝝓, where 𝒎 is the mass matrix and 𝝓 is the assumed 

displacement shape. Plot the base shear – control node displacement (usually at the 

centre of mass of the roof) to obtain the pushover curve. 

3. Convert the pushover curve to an equivalent SDOF system. This conversion is done 

by dividing both the control node displacement and the base shear by Γ =
𝝓𝑇𝒎𝟏 𝝓𝑇𝒎𝝓⁄ , provided 𝝓 is normalised to the control node displacement. This 

factor is often referred to as the modal participation factor. The base shear is further 

divided by the mass of the equivalent SDOF system, 𝑚∗ = 𝝓𝑇𝒎𝟏, to obtain 

pseudo-acceleration. 

4. Based on the properties of the equivalent SDOF system from Step 3, and the input 

spectrum, estimate the peak inelastic displacement of the SDOF system. 

5. Convert the displacement of the SDOF to the control node displacement of the 

structure. The result of the pushover analysis at that control node displacement is 
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considered to represent the peak demands under the considered earthquake.  

Several assumptions are used in the N2 method. In step 2, the use of an invariant lateral force 

distribution implies that the higher mode effects are considered negligible and the inertial 

force distribution to remain constant for the entire duration of loading. In addition, the 

diaphragms are considered rigid, so that a physically meaningful location of the control node, 

typically at the centre of mass of the roof, can be identified. In step 3, the conversion to an 

equivalent SDOF system is conducted assuming a single mode response, with the inertial 

force distribution that is identical with the displacement shape. Finally in step 4, the peak 

inelastic displacement demand is typically estimated using an empirical formula, for instance 

Vidic et al. (1994), with its own assumptions. 

 

2.2. Modal Pushover Analysis 

 

Extensions of the conventional method in including the higher mode effects have been 

investigated, predominantly for tall buildings. In this study, Modal Pushover Analysis (MPA) 

of Chopra and Goel (2002) is considered as the representative of the methods that include 

higher mode effects. In comparison to the N2 method, the MPA requires multiple pushover 

analyses, with an invariant pushover force in each mode, proportional to the mass multiplied 

by the elastic mode shape. The responses (e.g. displacement, drift, plastic hinge rotation) 

resulting from the modal pushover analyses are combined together to obtain the total 

responses. The MPA contains two main assumptions. Firstly, it assumes that the coupling 

between the (elastic) modal coordinates resulting from yielding of the system to be 

negligible. This is reflected in the independent pushover analyses using invariant force 

distributions proportional to the elastic mode shapes. Secondly, the peak modal responses are 

combined using mode combination rules, which is strictly applicable for linear systems only. 

In addition, the MPA also considers the floor diaphragms to be rigid, so that a unique control 

node can be established, usually at the centre of mass of the roof. 

 

2.3. Adaptive Capacity Spectrum Method 

 

The adaptive procedures attempt to address the invariant force distribution used in the 

previous methods. They aim to capture the progression of damage by continually modifying 

the pushover force distribution based on the instantaneous state of the structure at each 

pushover step. In this study, one such adaptive pushover algorithm by Antoniou and Pinho 

(2004) is examined in combination with the Adaptive Capacity Spectrum Method (ACSM) 

by Casarotti and Pinho (2007). The ACSM defines the equivalent SDOF system at each 

pushover step, using a substitute-structure approach of the Direct Displacement-Based 

Design method (Calvi and Kingsley, 1997). In contrast to the N2 or the MPA method, the 

ACSM exhibits two stages of adaptive processes. Firstly, the pushover analysis is conducted 

adaptively, based on the mode shapes calculated from the tangent stiffness of the structure at 

each step. Secondly, the determination of the equivalent SDOF system is also adaptive as it is 

based on the deformed shape of the structure at each pushover step. Perhaps the most 

attractive aspect of the ACSM for structures with flexible diaphragms is that the definition of 

the equivalent SDOF does not require a physical location of the control node. Instead, the 

equivalent SDOF system is expressed in terms of the “system” displacement, mass and 

acceleration such that the SDOF system retains the same amount of work done on the multi-

degree-of-freedom (MDOF) structure. However, the treatment of the higher-mode response is 

not as clear as the MPA. The effects of multiple modes can be included in the adaptive 

pushover algorithm, however, the use of the equivalent SDOF system at each pushover step 
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essentially results in the response to be described by a single mode (i.e. the current deformed 

shape). 

 

3. DEFINITION OF SIMPLE SYSTEM 

 

Simple two-degrees-of-freedom systems as shown in Figure 1 are used this study. This model 

is considered to be the simplest idealised system able to express the salient response 

characteristics of structures with flexible diaphragms. The model consists of two oscillators, 

wall 1 and wall 2, representing the parallel in-plane walls with their attribute masses (𝑚1, 

𝑚2), stiffnesses (𝑘1, 𝑘2), and damping properties (𝑐1, 𝑐2). The two oscillators are coupled by 

a shear spring (𝑘𝑑) representing the stiffness of the flexible diaphragm. The out-of-plane 

walls are neglected for simplicity, and the distributed mass of the flexible diaphragms is 

assumed to be negligible as far as the modes of vibration are concerned (the floor mass is 

“rigidly” lumped on the walls). The nonlinear behaviour of the in-plane walls are defined by 

a modified Takeda rule, while the diaphragm is considered to remain elastic. 

 
Figure 1. Simple 2-DOF system 

 

 

The behaviour of the system is governed by the following parameters: 

1.  Mass ratio, 𝑅𝑚 =
𝑚2

𝑚1
. Note that mass ratio has been set to 1 in this study.  

2. Period ratio of the uncoupled walls 𝑅𝑇 =
𝑇2

𝑇1
. The uncoupled period is defined by 

𝑇1 = 2𝜋√
𝑚1

𝑘1
 for wall 1. Similar definition applies to wall 2, and is denoted by 𝑇2. 

Without loss of generality, we let 𝑇2 ≤ 𝑇1 such that 𝑅𝑇 is bound between zero and 

one. Therefore, wall 1 may be referred to as the “flexible wall”, and wall 2 as the 

“stiff wall”. This condition is applied throughout this study. 

3. The relative stiffness of the diaphragm to the total lateral stiffness of the system, 

𝑘𝑑 𝑘𝑡𝑜𝑡⁄ , where 𝑘𝑡𝑜𝑡 = 𝑘1 + 𝑘2. 

4. The reference period of the system, taken to be the period of the rigid diaphragm 

system, 𝑇𝑟𝑖𝑔 = 2𝜋√
𝑚1+𝑚2

𝑘𝑡𝑜𝑡
. 

5. Damping of the system, assigned to be 5% of critical damping for each mode at any 

value of 𝑘𝑑 𝑘𝑡𝑜𝑡⁄ . 

6. Yield displacements of wall 1 and wall 2. These are specified using the parameters 
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𝑅𝑦1 and 𝛼1. Specifically for wall 1, the yield displacement is given by 𝑢𝑦1 =
𝑢𝑒𝑙1

𝑅𝑦1
 and 

for wall 2, 𝑢𝑦2 =
𝑢𝑒𝑙2

1+𝛼(𝑅𝑦1−1)
, where 𝑢𝑒𝑙1 and 𝑢𝑒𝑙2 are the peak elastic displacement 

of uncoupled wall 1 and wall 2 respectively. 𝑅𝑦1 is the yield force reduction factor 

specified for the uncoupled wall 1, and 𝛼1 signifies the strength ratio of the two 

walls, defined as 𝛼1 =
𝑅𝑦2−1

𝑅𝑦1−1
. 

 

4. GROUND MOTIONS 

 

Twelve natural accelerograms were obtained from the European Strong-motion Database and 

Selected Input Motions for displacement-Based Assessment and Design (SIMBAD) using the 

REXEL software (Iervolino et al., 2009). The records were scaled to be compatible with 

Type 1 spectrum of Eurocode 8 on soil type B. Figure 2 shows the comparisons of the mean, 

mean plus and minus standard deviation spectra of the records with the target spectrum. 

  
(a) Pseudo-acceleration spectrum (b) Displacement spectrum 

Figure 2. Mean, mean plus and mean minus standard deviation spectra of accelerograms  

 

5. METHODOLOGY 

 

The analysed cases are summarised in Table 2. For the conventional N2 method, the first-

mode proportional and the uniform pushover force distributions were investigated. For 

structures with flexible diaphragms, the location of control node is no longer unique. Hence 

two different possible control node locations were investigated, either on the flexible wall or 

the stiff wall. For the MPA, the control node of mode 1 was placed on the flexible wall, while 

that of mode 2 was placed on the stiff wall, in order to capture the dominant mode of each 

wall. The square-root-of-sum-of-squares (SRSS) modal combination rule was used for 

simplicity. For the adaptive pushover algorithm, the SRSS modal combination rule was used 

for the “spectral scaling” to include the higher mode effects in the adaptive pushover force 

variation. It is possible that the complete-quadratic-combination (CQC) rule could have 

provided more accurate predictions for these methods, when the periods of the two walls 

were close to each other (i.e. 𝑅𝑇 ≈ 1). Nevertheless, the results obtained using SRSS (Section 

6) indicate the comparable accuracies for the case in which the initial wall periods are similar 

and the case in which they are very different. It is the authors’ opinion that the choice of the 

modal combination rule had little influence on the outcome of this study. 
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Table 2: Analysis variables for the comparison of nonlinear static methods 

Nonlinear 

static method 
Pushover analysis 

Location of control 

node 
Comments 

N2 
Invariant, first mode-

proportional 
Flexible wall - 

N2 
Invariant, first mode-

proportional 
Stiff wall - 

N2 Invariant, mass-proportional Flexible wall - 

N2 Invariant, mass-proportional Stiff wall - 

MPA 
Invariant, first and second 

modes 

Mode 1 - flexible wall 

Mode 2 – stiff wall 
SRSS combination  

ACSM Displacement-based adaptive  - 

SRSS combination 

for spectral 

amplification 

In practice, the inelastic displacement demand (Step 4 of Section 2.1) is typically calculated 

from empirical expressions in conjunction with a code-defined elastic spectrum. In 

comparing the nonlinear static methods against time-history results, however, it is desirable 

to eliminate the errors associated with the use of a code-defined spectrum. Hence in this 

study, the inelastic displacement spectra were instead directly developed for each record. In 

deriving the inelastic displacement spectra, the modified Takeda hysteresis was used, and the 

viscous damping was set to 5% of critical.  

Even though the inelastic displacement spectra were directly used in the calculation of the 

peak displacements, linear interpolation was used to obtain data points lying between the 

calculated period values. This resulted in certain errors in the estimation of the peak 

displacements of the equivalent SDOF systems. Assuming a normal distribution of the mean 

errors, the upper and lower bounds of the baseline errors were defined by the 95% confidence 

interval, and are indicated in the results. 

 

5. RESULTS 

 

5.1. N2 method with first-mode proportional pushover force 

 

Typical results of the N2 method with the first-mode proportional pushover force are shown 

in Figure 3 and Figure 4. The estimated median ductility values (𝜇𝑁𝑆𝐴) are shown normalised 

to the median results of the time-history analysis (𝜇𝑇𝐻𝐴), and plotted against the diaphragm 

stiffness ratio, 𝑘𝑑 𝑘𝑡𝑜𝑡⁄ . Small values of 𝑘𝑑 𝑘𝑡𝑜𝑡⁄  indicate flexible diaphragms. In Figure 3, 

the control node is placed on the flexible wall. Figure 4 shows the results when the control 

node is placed on the stiff wall instead. The results correspond to Trig of 0.27 s, Ry1 of 3 and 

𝛼1 of 0.5. The dotted lines indicate the confidence interval on the mean error associated with 

the calculation of the peak displacement demand of the equivalent SDOF system, as 

described in Section 4.  

The ductility demands of the walls are accurately predicted when the diaphragm stiffness is 

large. Furthermore, when the control node is placed on the flexible wall, the ductility demand 

of the flexible wall is rather accurately captured for all values of diaphragm stiffnesses. On 

the other hand, the method significantly underestimates the ductility demand of the stiff wall, 

for 𝑘𝑑 𝑘𝑡𝑜𝑡⁄  approximately less than 0.1. The sudden reduction in the predicted ductility of 

the stiff wall highlights the limitation of the first-mode proportional pushover force. Since the 

response of the stiff wall becomes governed by the higher mode, while the response of the 

flexible wall remains in the fundamental mode as the diaphragm becomes flexible 
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(Nakamura, 2014), the first-mode pushover force can significantly underestimate the demand 

imposed on the stiff wall. 

When the control node is placed on the stiff wall, the method also gives accurate prediction 

when the diaphragm is relatively rigid, for 𝑘𝑑 𝑘𝑡𝑜𝑡⁄  larger than approximately 1. However, 

the accuracy again reduces as the diaphragm becomes flexible. In contrast to the case when 

the control node is placed on the flexible wall, the prediction becomes erroneous for both 

walls.  

 

  
(a) Wall 1 (flexible wall) (b) Wall 2 (stiff wall) 

Figure 3. N2 method with first-mode proportional pushover and control node on flexible wall (Trig = 

0.27 s, Ry1 = 3, α1 = 0.5) 

  

(a) Wall 1 (flexible wall) (b) Wall 2 (stiff wall) 

Figure 4. N2 method with first-mode proportional pushover and control node on stiff wall (Trig = 0.27 

s, Ry1 = 3, α1 = 0.5) 

 

5.2. N2 method with uniform pushover force 

 

Typical results of the N2 method with the uniform pushover force are shown in Figure 5 and 

Figure 6 when the control node is placed on the flexible wall and stiff wall respectively. The 

Figures correspond to Trig of 0.27 s, Ry1 of 3 and 𝛼1 of 0.5. The plots show that the response 

of the rigid diaphragm system can be estimated accurately. In addition, the importance of the 

location of the control node can be observed. As the diaphragm becomes flexible, the 

prediction is seen to diverge for the wall on which the control node is not placed. For the wall 

on which the control node is placed the prediction is rather accurate for a wide range of 
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diaphragm stiffnesses, with some local deviations occurring in the range of 𝑘𝑑 𝑘𝑡𝑜𝑡⁄  between 

0.01 and 1.  

 

  
(a) Wall 1 (flexible wall) (b) Wall 2 (stiff wall) 

Figure 5. N2 method with uniform pushover and control node on flexible wall (Trig = 0.27 s, Ry1 = 3, 

α1 = 0.5) 

  
(a) Wall 1 (flexible wall) (b) Wall 2 (stiff wall) 

Figure 6. N2 method with uniform pushover and control node on stiff wall (Trig = 0.27 s, Ry1 = 3, α1 = 

0.5) 

 

5.3. Modal Pushover Analysis 

 

Figure 7 shows the median peak ductility of MPA normalised to the time-history results for 

Trig of 0.27 s, Ry1 of 3 and 𝛼1 of 0.5. Figure 8 shows the results corresponding to the same 

system parameters except 𝛼1 is set to 1. Both plots show more consistent predictions of the 

ductility demands for both walls, as compared to the conventional method. The predictions 

are also accurate for both the rigid diaphragm and completely flexible diaphragm conditions. 

For the 𝑘𝑑 𝑘𝑡𝑜𝑡⁄  values approximately between 0.01 and 1.0, local deviations in the 

predictions are observed.  

Even though the predictions are good in most cases, large errors can result when 𝑅𝑇 = 1 and 

𝛼1 ≠ 1. The error arises in MPA in these cases because of its assumption that the uncoupled 

elastic modes can be used to estimate the inelastic “modal” responses. When 𝑅𝑇 = 1 (with 

𝑅𝑚 = 1, as assumed throughout this study), the structure becomes symmetrical in the elastic 
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range. The higher mode then comprises of the purely asymmetric mode, which does not 

participate in the elastic responses. In fact for a purely torsional mode, the pushover results in 

a zero base shear. However, such a mode can be important in the inelastic responses when 

there is a difference in the strengths of the wall, that is, when 𝛼1 ≠ 1.0.  

 

  
(a) Wall 1 (flexible wall) (b) Wall 2 (stiff wall) 

Figure 7. Modal Pushover Analysis (Trig = 0.27s, Ry1 = 3, α1 = 0.5) 

 

  
(a) Wall 1 (flexible wall) (b) Wall 2 (stiff wall) 

Figure 8. Modal Pushover Analysis (Trig = 0.27 s, Ry1 = 3, α1 = 1) 

 

5.4. Adaptive Capacity Spectrum Method 

 

Figure 9 shows the median peak ductility calculated from the ACSM and normalised to the 

time-history results for Trig of 0.27 s, Ry1 of 3 and 𝛼1 of 0.5. Similar to the MPA, the ACSM 

gives more consistent results for both walls when compared to the conventional method with 

invariant pushover forces. The prediction, however, gradually becomes inaccurate as the 

diaphragm flexibility increases. Although the higher mode effects are included in the 

pushover force distribution, the method essentially considers a single-mode response at each 

pushover step. Hence when the diaphragm becomes flexible, the multi-mode nature of the 

response is not captured as well as in the MPA. 
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(a) Wall 1 (flexible wall) (b) Wall 2 (stiff wall) 

Figure 9. Adaptive Capacity Spectrum Method (Trig = 0.27s, Ry1 = 3, α1 = 0.5) 

 

6. SUMMARY AND CONCLUSIONS 

 

The applicability of nonlinear static methods for structures with flexible diaphragms has been 

investigated using simple systems. The ductility demands of inelastic 2-DOF were estimated 

by the N2, the MPA and the ACSM procedures and compared with the results of the time-

history analysis.  

When the diaphragm stiffness was large, all methods estimated the peak ductility demands 

well. However, their accuracies reduced as the diaphragm became flexible. 

The N2 method with the first-mode proportional pushover force resulted in severe 

underestimations of the stiff wall’s ductility as the diaphragm flexibility increased. This was 

due to the separation of the stiff wall’s response from the assumed first-mode response.  

The N2 method with the uniform pushover force resulted in good correlations with the time-

history results for the wall on which the control node was placed. Large errors were obtained, 

however, for the wall that did not have the control node.  

The MPA provided a more consistent level of predictions for both walls as compared to the 

N2 method. In general, the predictions were accurate for both the rigid diaphragm and the 

completely flexible diaphragm conditions. However, local deviations in the ductility 

predictions were observed for 𝑘𝑑 𝑘𝑡𝑜𝑡⁄  between 0.01 and 0.1. The assumption of the 

uncoupled modal coordinates lead to inaccurate results when the structure was symmetric in 

the elastic range (𝑅𝑇 = 1) but had strength irregularity (𝛼1 ≠ 1).  

The ACSM also provided a consistent level of predictions for both walls. However, since the 

method essentially assumes a single-mode response at each pushover step, the error in the 

ductility estimation increased as the diaphragm flexibility increased. The method had the 

tendency to underestimate the ductility demands. 

From the foregoing discussions, it appears that MPA provides the most promising framework 

on which to develop a pushover method suitable for unreinforced masonry buildings with 

flexible diaphragms. 
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