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Abstract 
 

Building pounding, defined as the earthquake induced collision between insufficiently spaced 
buildings, has been recognized as a recurring urban seismic hazard. Numerous studies have 
been carried out in the past decades on the severity of the hazard. Most of the studies employ 
a contact force approach, where an elastic or viscoelastic link is placed between the colliding 
masses in series with a gap. The link is activated when the gap is closed and the pounding 
force is calculated from the deformation, and rate of change of deformation of this link. 
Several numerical models have been proposed to compute the pounding force. Past studies 
have compared the performance of these models in predicting force due to the impact of a 
sphere falling on a floor or a beam. However, building pounding is the collision of distributed 
masses i.e. slabs or beams of structures and few such experimental results exist. This study 
presents the force due to the pounding of two suspended reinforced concrete slabs. The 
effects of variation in velocity are shown. The experimental results were compared with the 
predictions of numerical models. The results show that the updated Hertzdamp model had the 
least error in the prediction of pounding force. 
 
Keywords: building pounding, pounding force, concrete slabs impact, impact element 

method 
 
 
1 INTRODUCTION 

 
Past major urban earthquakes have shown that buildings can collide and damage each other 
(Rosenblueth and Meli 1986) if there is insufficient separation to accommodate the relative 
movement. This type of collision, termed pounding, has also been observed when two bridge 
decks collide or a bridge deck collides with the abutment (Malhotra 1998; Chouw and Hao 
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2008; Li et al. 2013).  The relative motion is due to the out-of-phase vibration of adjacent 
buildings. The phase difference can be induced by differing structural properties 
(Anagnostopoulos 1988), differing foundation soil (Schmid and Chouw 1992; Chouw 2002) 
or due to the spatial variation of ground motion (Li et al. 2012). Cole et al. (2012) 
documented many instances of pounding observed in the Christchurch 2011 earthquake, 
which produced very minor, aesthetic damage as well as major structural damage in 
buildings. Chouw and Hao (2012) presented many instances of building and bridge pounding 
in the same earthquake as well as several instances of vertical pounding. 
 

 
 

Fig. 1.  Lumped mass model of pounding. 
 
Seismic pounding has been simulated as either the collision of masses concentrated at a point 
i.e. a lumped mass model or as impact between distributed masses. In the lumped mass model 
(Fig. 1), the floor masses of the structures are lumped at a level, and the structures are 
idealized as single degree-of-freedom (SDoF) or multiple degrees-of-freedom (MDoF) 
according to the number of storeys (Anagnostopoulos 1988). It is assumed that the response 
of the structure can be calculated as if the pounding force is concentrated on the centre of 
mass of the colliding floors.  In the distributed mass model (Fig. 2), the floor mass is 
distributed over its length. The force acts on the contact surface and its effects take time to 
distribute throughout the length. Most distributed mass models are derived or validated with 
the Saint-Venant’s theory of impact, also known as wave propagation theory (Malhotra 1998; 
Cole et al. 2010). 

 
 

Fig. 2. Distributed mass model. 
 
Several numerical force models have been proposed for both these methods. A detailed 
treatment of the lumped mass models have been provided in Khatiwada et al. (2013a) while 
Khatiwada et al. (2013b) discussed distributed mass models in more detail. The discussions 
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have not been reproduced here due to page limitations. Khatiwada et al. (2013a) attempted to 
identify the best performing lumped mass model from the shake table investigation of 
pounding between steel portal frames. Several pairs of frames were subjected to pounding 
under five different ground motions and the amplification of maximum displacement of the 
beams was calculated for each case. The simulations were repeated numerically with five 
different numerical force models. It was observed that all the numerical models predicted 
similar amplification ratios. Thus the models were found to be equally correct under some 
ground motions and equally incorrect under others. It was postulated that the high error under 
more severe ground motions could be due to velocity dependence of the coefficient of 
restitution which is a measure of energy loss during each impact. Khatiwada and Chouw 
(2013) considered the consequence of pounding for buildings in a row. 
 
This study is a continuation of the effort to identify the best performing numerical force 
model for analysis of pounding. Two reinforced concrete (RC) slabs were suspended from an 
overhead support and subjected to impact. The acceleration and displacement of the slabs 
were measured. The pounding force and coefficient of restitution were calculated. The force 
was also simulated from five different models and compared with the pounding force from 
the experiments to identify the best performing model.  
 
2 NUMERICAL FORCE MODELS 
 
Five viscoelastic force models, defined for lumped mass idealization, were included in the 
study. The models are defined for two bodies of mass m1 and m2, connected by a spring and a 
dashpot which are arranged in series with a ‘gap’ that is equal to the separation gap between 
the structures (Fig. 3). At any time t, the displacement of the bodies is u1 and u2 and velocities 
are v1 and v2. If u1 - u2 is greater than the gap, the bodies are in contact and pounding force 
exists otherwise the force is zero. All models calculate pounding force F as a function of 
relative deformation δ = u1 - u2, and relative velocity   = v1 - v2. The viscous energy loss 
depends upon a predetermined coefficient of restitution e.  
 

 
 

Fig. 3. Viscoelastic model of lumped mass impact. 
 

The detailed descriptions of the models can be found in comparative studies by Jankowski 
(2005), Muthukumar and DesRoches (2006) and Khatiwada et al. (2013a). 
 
2.1 Linear viscoelastic model (LVe) 
 

 ckF   (1) 
where, c is the damping constant given by, 
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and damping ratio ξ can be obtained from: 
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2.2 Modified linear viscoelastic model (MLVe) 
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where the approach only damping constant, c, can be calculated from Equation (3) but the 
expression of damping ratio ξ is modified to  

e

e211 


  (5) 

 
2.3 Nonlinear viscoelastic model (NlVe) 
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where instantaneous damping c is given by: 
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2.4 Updated Hertzdamp model (Hd) 
 

 2323 //kF  (7) 
where the viscoelastic part of the force depends upon the relative deformation and relative 
velocity. The damping factor ζ is obtained from the implicit equation, 
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2.5 Linear Hunt-Crossley model (LHC) 
 

 kF   (9) 
where the damping factor ζ is same as that for Hd model (Equation (8)) 
 
The LVE, MLVe and NlVe models were respectively proposed by Anagnostopoulos (1988), 
Mahmoud (2008) and Jankowski (2005). The last two models (Hd and LHC) were obtained 
by the current authors (unpublished) while attempting to correct the error in Hertzdamp 
(Muthukumar and DesRoches 2006) and modified Hertzdamp (Ye et al. 2009b) models. The 
two equations are linear and nonlinear form of the Hunt-Crossley model (Zhang and Sharf 
2009). Equation (8) is the numerically exact solution of the Hunt-Crossley models which had 
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been approximately solved previously as Hertzdamp, modified Hertzdamp and modified 
Kelvin impact model (Ye et al. 2009a) 
 
3 EXPERIMENTAL SETUP 

 

 
 

Fig. 4. Schematic of the experimental setup. 
 
The experiment was set up as forcing an impact between two pendulums (Fig. 4). The RC 
slabs of size 550 x 550 x 120 mm were hung from overhead support, with four cables each. 
The length of the cables was 1.5 m. Initially, the slabs were just touching each other. The 
impact was induced by pulling one of the slabs, termed striker, to a certain distance and 
releasing it so that it hit the second slab just as it reached the lowermost point in its 
displacement path. A laser sensor was used to measure the displacement of the far end of 
each slab while two accelerometers were used to record the acceleration during impact. 
During the test, the initial displacement was measured approximately. During calculation, the 
actual initial and final displacements were obtained from the lasers. The dynamic equilibrium 
of the striker is shown in the upper right corner of Fig. 4. Thus, the pounding force can be 
calculated as a product of mass and acceleration of the striker. 
 

 
 

Fig. 5. Photograph of the test setup. 
 

At the contact end, a detachable pounding element was bolted to each slab, to save the main 
body from impact damage at the contact surface. Both pounding elements had a dimension of 
100 x 550 x 120 mm but the striker had a hemispherical protrusion of 100 mm diameter at its 
center (Fig. 5). Thus, the pounding force was assumed to be concentrated at the center of the 
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contact ends. The slabs had a mass of 95 kg each, the striker’s attachment was 15 kg and the 
struck slab’s attachment was 14 kg.  
 
Eight tests were carried out for d = 10, 15, 37, 56, 66, 71, 87 and 94 mm. The data was 
recorded at 10 kHz sampling rate. Perhaps due to the low impact velocities, no damage was 
observed at the pounding locations after the tests. 
 
4 RESULTS AND DISCUSSIONS 
 
The pounding forces obtained at two different impact velocities are shown in Fig. 6.  The 
negative part of the force was quite surprising. After negative forces were observed, the test 
setup was re-checked thoroughly for the presence of any deficiencies. A few of the impacts 
were repeated a number of times and a video recording was made, which was reviewed 
thoroughly for the presence of any out-of-plane movement or other errors. It was observed 
that the results were always as shown in Fig. 6 with both negative and positive oscillations. 
The video recordings showed no significant out-of-plane movement for the first two impacts 
in each test though there was some out-of-plane movement after the third or fourth impact in 
each test. Finally, it was assumed that the oscillations were due to the internal vibrations of 
the slabs due to impact. Thus, for the evaluation of lumped mass models, only the first 
positive pulse of force has been considered.   

 

 
 

Fig. 6. Pounding force recorded from two impacts 
 

 
 

Fig. 7. Simulated and measured pounding force for impact velocity 0.096 m/s 
 
The final velocities of the slabs were calculated from the post-impact displacements and the 
coefficient of restitution for each impact was calculated as the ratio of relative velocities after 
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and before impact. For the two velocities shown in Fig. 6, the coefficient of restitution was 
approximately 0.7.  
 
For each impact test, numerical simulations were carried out with the five numerical models 
described in Section 2. A time step of 10 μs was adopted in the calculations. For each impact, 
the stiffness k for each model was optimized so that the peak simulated force was equal to the 
peak experimental force. Fig. 7 shows the simulated and measured force for an impact 
velocity 0.096 m/s.  
 
Table 1 shows the normalized error (NE) in predictions for the models as defined in Equation 
(10). It is apparent that Hd model has the least error in all the cases, sometimes almost half of 
the other models. Although the LHC model is defined for linear stiffness, it performed better 
than the NlVe model which is based on Hertz contact law for curved surfaces even though the 
contact surface was spherical. The LVe model proved to be as accurate as NlVe even though 
it was not derived for the prediction of pounding forces. The MLVE model always has the 
highest normalized error.  
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where n is the total number of time-steps, Fm is the force predicted at ith time-step by the 
model and Fr is the force recorded in the experiment at the same time-step. 
 

Table 1. Normalized error in simulated forces 
 

Trial 
Velocity 

(m/s) 
Normalized Error NE 

LVe MLVe NlVe Hd LHC 

1 0.030 50.18% 69.53% 61.42% 26.12% 43.38% 

2 0.040 74.25% 87.32% 79.59% 48.14% 64.52% 

3 0.096 62.33% 79.14% 68.39% 38.81% 56.68% 

4 0.146 80.22% 94.44% 83.04% 56.66% 73.60% 

5 0.171 91.76% 103.11% 92.08% 69.06% 84.97% 

6 0.183 79.89% 91.55% 76.87% 57.92% 76.31% 

7 0.226 90.22% 101.03% 91.24% 67.36% 82.65% 

8 0.243 81.93% 93.15% 81.04% 60.30% 76.92% 
 
It can be observed from Table 1 that the predictions from all five numerical models are closer 
to each other than to the experimental results. For instance: the NE for Hd model in Trial 5 is 
56% while the average error of all five models is 77.59%. Similarly, the rising curve of 
simulated force (Fig. 7) is steeper than the falling curve and the force time-history is right-
skewed but the experimental force shows opposite characteristics. "Finally, the oscillations 
observed in the force time-histories (Fig. 6) suggests that even these relatively short slabs 
showed the effects of internal vibrations of distributed mass. Thus, the applicability of 
lumped mass models to simulate pounding between considerably longer building slabs or 
bridge decks needs to be reassessed, for example, with larger scale impact tests. The wave 
propagation effects cannot be isolated in these slabs because the first fundamental period of 
internal vibration is 0.4 ms, while the first positive pulse of acceleration is ten times that.    
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5 CONCLUSIONS 
 
Two RC slabs were arranged to impact against each other at different impact velocities. The 
contact surface is spherical on one slab and planar on the other. The pounding forces were 
calculated from the impact accelerations according to Newton’s second law of motion, while 
the coefficient of restitution for each impact was calculated from the post-impact maximum 
displacement of the slabs. The impact forces were also simulated with five numerical models 
for each impact velocity with the coefficient of restitution calculated from the experimental 
data. The normalized error of simulation was also calculated and shows that the updated 
Hertzdamp model had the least simulation errors while the modified viscoelastic model had 
the largest errors for all impacts. 
 
Further large scale impact tests are required to verify the results. The large scale tests will 
also be able to identify the presence of distributed mass effects, suggested by these tests, 
more accurately.   
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