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Abstract 
 
Collapses of transmission towers have always been observed in previous large 
earthquakes such as the Chi-Chi earthquake in Taiwan and the Wenchuan earthquake in 
Sichuan. These collapses were partially caused by the pulling forces from the 
transmission lines generated from out-of-phase responses of the adjacent towers owing 
to spatially varying earthquake ground motions. In this paper, a three-dimensional finite 
element model of a transmission tower-line system with geometric nonlinearity of 
transmission lines is established, and the nonlinear responses of the system subjected to 
spatially varying ground motions are analysed. The spatially varying ground motions 
are simulated stochastically based on an empirical coherency loss function, an assumed 
apparent wave velocity, and a filtered Tajimi-Kanai power spectral density function. 
Numerical results indicate that the assumption of uniform ground motion could not 
provide an accurate response estimation of the transmission tower-line system. Ground 
motion spatial variations increase the internal force and the displacement response of 
transmission towers and transmission cables. Neglecting earthquake ground motion 
spatial variations may lead to a substantial underestimation of the transmission tower-
line system response during strong earthquake shakings.  
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1.  INTRODUCTION 
 
With the rapid development of improved welding techniques, high strength steel and 
wire materials and the progress in structural analysis and design theory, the spans and 
dimensions of transmission tower-line system have been increasing dramatically. For 
such a structural system, it is unrealistic to assume that earthquake ground motions at 
multiple towers are the same because of the inevitable ground motion spatial variations. 
The seismic response of long span structures subjected to spatially varying earthquake 
ground motions has attracted the attention of many researchers. Zanardo et al. (2002) 
performed a parametrical study of the pounding effect on responses of a multi-span 
simply supported bridge with base isolation devices. Hao and Duan (1996) investigated 
the torsional responses of symmetric buildings subjected to spatially varying base 
excitations. Rassem et al. (1996) studied the effect of multiple support excitations on 
the response of suspension bridges. Harichandran et al. (1996) carried out stationary 
and transient response analyses of suspension and arch bridges to spatially varying 
ground motion and compared the results with responses computed using identical and 
delayed excitations. All these investigations concluded that spatially varying earthquake 
ground motions strongly affect the responses of long span structures. However, most of 
these studies focus on bridge and building structures, and only linear elastic responses 
are considered. Owing to complex coupled tower-line vibration and geometric 
nonlinearity of cable, the behaviours of transmission tower-line system under 
earthquake ground excitations are expected to be very different from bridge and 
building structures. But studies of transmission tower-line system response to 
earthquake ground motions are limited. Therefore, to better understand the behaviours 
and to achieve a more reliable design of transmission tower-line system to resist 
spatially varying earthquake ground motions, it is necessary to study the responses of 
such long and complex structures to spatial earthquake ground excitations. 
  
Since an electric power transmission system generally covers a large area, adjacent 
transmission towers may locate on sites of different conditions and elevations. In this 
study, nonlinear responses of a transmission tower-line system at an uneven site 
subjected to spatially varying ground motions are analysed. The spatial ground motions 
are simulated stochastically based on an empirical coherency loss function and a filtered 
Tajimi-Kanai power spectral density function. Discussions on the ground motion spatial 
variation effect on the tower-line system are made and some conclusions are drawn. 
 
2.  TRANSMISSION TOWER-LINE SYSTEM MODELLING 
 
A typical three-dimensional model of coupled transmission tower-line system is 
established based on a real electric power transmission project in the northeast of China. 
Computer software SAP2000 is used to model this tower-line system in this study. The 
single tower model is shown in Figure 2. The weight of tower is approximately 30 t. 
The structural members of the tower are made of angle steel with the elastic modulus of 
206 GPa. The tower is modelled by 1883 space beam members and 727 nodes, the 
connections of members are rigid, and the structural supports of the towers are assumed 
to be fixed. The first three frequencies of a standalone tower are 1.771 Hz, 1.773 Hz and 
4.021 Hz. The transmission line is modelled by 300 two-node isoparametric cable 
elements with three translational DOF at each node. The initial axial force and large 



deformation effect of cable are taken into consideration. Under self weight, the cable 
spatial configuration is a catenary. Based on the coordinate system illustrated in Figure 
1, the mathematical expression used to define the initial geometry of the cable profile is 
given in the following form (Shen et al. 1997) 
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in which H  represents initial horizontal tension 
which can be obtained from a preliminary static 
analysis, and q  denotes uniformly distributed 
gravity loads along the transmission line. The 
structural model consists of three towers and 
two-span cables. The transmission lines are 
assumed to be pin connected to the tower cross arms. The first frequency of the coupled 
transmission tower-line system is 0.159 Hz, which corresponding to the vibration mode 
of the top layer cable. 
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Figure 2. Transmission 
tower model 

Figure 3.  Schematic view of  transmission tower-line system 
crossing an uneven site 

 
Figure 3 shows the schematic view of the transmission tower-line system crossing an 
uneven site under consideration in this study, in which points A , B  and C  are the three 
tower supports on the ground surface, the corresponding points on base rock are 'A , 'B  
and 'C . It should be noted that the ground motions at different supports of each tower 
are assumed the same due to the distances between the supports of the same tower are 

 

Figure 1. Coordinates of a single 
cable under self weight 
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small as compared with those between different towers. h , S  and H  represent the 
height of tower, the horizontal span between the adjacent towers and the depth of soil 
layer under each tower, respectively, the corresponding values considered in this study 
are given in Figure 3.  
 
3.  SIMULATION OF SPATIALLY VARYING GROUND MOTIONS 
 
3.1.  Power spectral density function 
 
Ground motion intensities at 'A , 'B  and 'C  on the base rock are assumed to be the 
same but vary spatially. Its power spectral density is modelled by a filtered Tajimi-
Kanai power spectral density function, which is expressed as (Ruiz and Penzien 1969) 
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in which ωf  and ξf  are the central frequency and damping ratio of the high pass filter, 
respectively. gω  and gξ  are the central frequency and damping ratio of the Tajimi-Kanai 
power spectral density function, respectively. Γ  is a scale factor depending on the 
ground motion intensity, and 32 /0078.0 sm=Γ  is used in this study, which corresponds 
to a ground acceleration of duration sT 20=  and peak value (PGA) g3.0  estimated with 
the standard random vibration method (Der Kiureghian 1980). Without losing generality, 
in this study, it is assumed that Hzf ff 25.02/ == πω , 6.0=fξ , Hzf gg 0.52/ == πω  
and gξ =0.6. 
 
3.2. Coherency loss function 
 
An empirical coherency loss function derived from recorded strong ground motions at 
the SMART-1 array is used in this study to model ground motion coherency loss (Hao 
et al. 1989). The coherency loss function between two locations 'i  and 'j  on the base 
rock is    
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in which '' ji
d  is the projected distance between points 'i  and 'j  in the wave propagation 

direction, β  is a constant and )(ωα  is a function with the form 

⎩
⎨
⎧

>++
≤≤++

=
sradcba

sradsradcba
/83.62,101.0

/83.62/314.0,2//2
)(

ω
ωπωωπ

ωα             (5) 

where a , b  and c  are constants and can be obtained by regression method. The 
constants of the coherency loss function used here are derived from the recorded strong 
motions during Event 45 at the SMART-1 array (Hao 1989), and it represents highly 
correlated ground motions.  
                                                                                                                                                                         
The cross power spectral density function of motions at two locations 'i  and 'j  on the 
base rock is expressed as 
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in which appv  is the apparent wave propagation velocity and the exponential function 
represents the influence of wave passage effect.  
 
3.3.  Method for generating spatially varying ground motions 
 
The spatially varying ground motions are simulated stochastically based on the above 
mentioned  empirical coherency loss function and filtered Tajimi-Kanai power spectral 
density function, which is based on the simulation method developed by Hao et al. 
(1989). The ground acceleration power spectral density function of the site with three 
structural supports can be expressed as 
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in which )(ωiiS  and )( ωiSij ( i , j = 1,2,3) are auto power spectral density function and 
cross power spectral density function at ground surface points, respectively. The 
functions can be obtained by 
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where the superscript ‘ ∗ ’ represents complex conjugate, )( ωiHi and )( ωiH j are the 
transfer function at sites i  and j , respectively, which can be estimated by one 
dimensional wave propagation assumption developed by Hao and Chouw (2006). The 
transfer function can be expressed as 
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in which iii vh /=τ  is the wave propagation time from point 'i  to i , the reflection 
coefficient for up-going waves ir , which plays a significant role in the effects of the soil 
layer, is given by 
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where ρ , v  and ξ  denote the density, the shear wave velocity and the damping ratio, 
respectively. In this study, the parameters of base rock are assumed that Rρ = 3000 kg/m3, 

Rv = 1500 m/s, Rξ = 0.05; the corresponding parameters of firm soil under support point 
i  are iρ = 2000 kg/m3, iv = 450 m/s, iξ = 0.05.  
 
Since the matrix )( ωiS  is Hermitian and positive definite, it can be decomposed into the 
multiplication of a complex lower triangular matrix )( ωiL  and its Hermitian matrix 

)( ωiLH  by the Cholesky’s method, which is given by 
)()()( ωωω iLiLiS H=                                                  (13) 



The spatial ground motion time histories of the three different locations can be obtained 
by  
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where ,/, Nl Nl ωωωω =ΔΔ=  and Nω  represents an upper cut-off frequency, )(tζ  is a 
shape function, )( lml ωϕ  is a random phase angle uniformly distributed over the range 0 
to π2 , k =1,2,3 and representing support points A, B and C in this study, )( lkmA ω  and 

)( lkm ωθ  denote the amplitudes and phase angles of the generated time histories. In this 
study, the ground motion duration is assumed to be 20 sec, the simulation is carried out 
with the sampling frequency of Hz50  and the upper cut-off frequency is set to be Hz25 .  
 

As described in Table 1, a total of 4 cases 
of spatial ground motions are simulated in 
this study. In each case, the firm soil site is 
assumed and three horizontal ground 
motion time histories are simulated 
corresponding to the spatial ground 
motions at the three tower supports. Figures 
4 and 5 show a typical set of simulated 
spatial horizontal acceleration and 
displacement time histories on uniform 
firm sites with apparent velocity 1000m/s 
and high cross correlation assumption. 
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Figure 4.  Generated spatial ground 
accelerations on uniform firm site (case 4) 

Figure 5.  Generated spatial ground 
displacements on uniform firm site (case 4) 

 
4.  NUMERICAL ANALYSIS 
 
Nonlinear responses of the coupled transmission tower-line system shown in Figure 3 
subjected to the above simulated spatially varying ground motions are calculated. In this 

Table 1.  Seismic excitation cases 
 

Case Wave Apparent 
Velocity Coherency 

1 infinite perfectly 
2 1000m/s perfectly 
3 infinite highly 
4 1000m/s highly  



study, only the longitudinal ground excitations are considered. The damping ratio of 
tower and cable are assumed to be 2% and 1%, respectively. The Newmark- β  method 
is applied in the numerical integration, in which β  is set to 0.25. For each ground 
motion case listed in Table 1, independent numerical calculations are carried out using 
six sets of independently simulated spatial ground motions as input. The mean response 
values obtained from the six numerical calculation results, corresponding to the middle 
tower and transmission lines of the second span, are presented and discussed in this 
study. 
 
To examine the ground motion spatial variation effect, numerical results corresponding 
to the four spatial ground motion cases are compared. The four ground motion cases 
represent four different spatial variations. In particular Case 1 neglects ground motion 
spatial variation, which represents the traditional uniform ground motion assumption; 
Case 2 considers only spatial ground motions wave passage effect, or the so-called 
delayed input in some of the previous studies; Case 3 considers spatial ground motions 
with coherency loss effect only; and Case 4 is the general case which considers spatial 
ground motions with both wave passage effect and coherency loss effect. 
 
4.1. Seismic response of transmission line 
 
Figure 6 shows the mean maximum vertical displacements of the top layer cable along 
the length of the second span corresponding to the 4 cases of spatial ground excitations. 
Mean maximum cable force in each layer of cables corresponding to the 4 cases of 
spatial ground excitations is plotted in Figure 7. As shown in Figure 6, the responses 
corresponding to uniform ground motion (Case 1) and spatial ground motion without 
considering phase shift are almost symmetric over the entire span, indicating the 
antisymmetric modes of the cable are only slightly excited. When spatial ground 
motions with phase shift are considered (Case 2 and Case 4), the antisymmetric 
vibration modes will be excited. The contributions from the antisymmetric modes are 
prominent. Case 4 ground motions, which have most significant spatial variations, 
produce the largest cable displacement equal to 113.7 cm at one-third span of the 
transmission line. Considering spatial ground motion wave passage effect only (Case 2) 
results in similar responses as those from Case 4 motions, implying the phase shift 
effects dominate the spatial ground motion variation effects for this structural system. A 
previous study (Hao 1993) revealed that spatial ground motion wave passage effect is 
more significant if the structure is relatively flexible as compared to the dominant 
ground motion frequency and when the structure responses are governed by dynamic 
responses; and spatial ground motion coherency loss effect becomes more pronounced 
if the structure is relatively stiff and its responses are governed by quasi-static responses. 
The coupled transmission tower-line system under consideration consists of high towers 
and long flexible cables, which makes it a very flexible structure. Therefore, the ground 
motion wave passage effect is more significant than coherency loss effect. Similar 
results have been observed in Figure 7, as the axial force responses in each layer of 
cables obtained from Case 2 and Case 4 are close to each other and are larger than those 
obtained from Case 1 and Case 3. It is obvious that the more significant is the ground 
motion spatial variation, the larger are the cable responses. The largest axial force 
equals 19.87 kN in the second layer cable corresponding to the response under ground 
motion excitation Case 4. It is noted that the axial force response in top layer cable is 



minimum and the effect of ground motion spatial variation on it is least significant 
among all the cable layers. 
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Figure 6.  Mean maximum displacements 

induced by spatial ground excitations 
Figure 7.  Mean maximum cable axial forces 

induced by spatial ground excitations 
 
4.2. Seismic response of transmission tower  
 
Figure 8 shows the mean maximum axial forces in tower members along the height of 
the middle tower corresponding to the 4 cases of spatial ground excitations. As shown, 
the axial force responses corresponding to Case 1 are approximately the same as those 
obtained from Case 3, which indicate again the coherency loss effect on the axial force 
responses of tower is not very significant. Different from seismic response of 
transmission line, the axial force responses of tower considering the wave passage effect 
only (Case2) are larger than those considering spatial ground motions with both wave 
passage effect and coherency loss effect (Case4). As can be noticed, neglecting ground 
motion spatial variations, the axial force responses in the tower members could be 
substantially underestimated, especially in those members in the lower half of the tower, 
where the axial forces could be underestimated by more than 25%.  
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Figure 8.  Mean maximum axial forces in  tower 
members induced by spatial ground excitations 



5.  CONCLUSIONS 
 
This paper presents numerical simulation results of nonlinear dynamic responses of a 
transmission tower-line system to spatially varying ground motions. It is found that: 
 
(1) Ground motion spatial variations induced by wave propagation are more important 

than those induced by loss of coherency to the responses of transmission tower-line 
system. 

(2) The response values obtained from delayed excitations and multiple support 
excitations are similar, but delayed excitations induce smaller structural responses in 
most cases. Thus, the multiple support excitations considering wave passage effect 
and coherency loss effect simultaneously can give accurate estimation of seismic 
responses of transmission tower-line system. 

(3) Ground motion spatial variations have significant effect on seismic responses of 
transmission tower-line system. Neglecting ground motion spatial variations in 
predicting the transmission tower-line system responses to earthquake excitations 
may substantially underestimate the structural responses.  
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