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Summary: In low to moderate seismicity regions, seismic resistant design is still considered complicated and expensive in 
terms of actual seismic risk. Moreover, in the design codes, economic factors have not been integrated fully with the design 
principles. Bridges are the most critical components of the transportation network and deserve proper consideration in terms of 
seismic risk.  A systematic approach is proposed for evaluating the cost-effectiveness of existing bridge design codes from the 
perspective of lifecycle cost consideration. It is demonstrated that life cycle cost should be considered in the design phase of a 
new/retrofitted structure, and the target performance significantly depends on the expected average daily traffic.

Definition of Performance Limit States

Objectives: The objective of this paper is to propose expected life cycle cost oriented approach to ascertain optimal seismic 
design of bridges based on economic principles. 

Life Cycle Cost of Analysis of a Two-Span Bridge:

A simple two-span bridge in Vancouver; Design peak ground acceleration 0.3g, Span length= 20 m, Supported by 9 m high pier, 
Superstructure unit weight= 150 kN/m. A 11 km detour will be required for the 1 km of roadway in which the bridge is located.

Analytical Modelling: Experimental Result 
compared with Analytical Prediction

Conclusions:
A systematic approach is proposed for the optimal seismic design

of bridges considering life cycle cost, based on performance 
limit states that can be related directly to the functionality 
and repair cost. 

Life cycle cost of a bridge depends largely on the user cost. If the 
bridge is located in a busy roadway, it is economical to design 
the bridge for a higher level of earthquake ground motion
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Life Cycle Cost of a Two-Span Bridge
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Experimental Data
Initial Yielding (Experimental)
Initial Spalling (Experimental)
Initial Core Crushing (Experimental)
Buckling of Bars (Experimental)
Hoop Fracture (Experimenta)
Initial Yielding (Analytical)
Initial Spalling (Analytical)
Initial Core Crushing (Analytical)
Buckling of Bars (Analytical)
Hoop Fracture (Analytical)
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