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ABSTRACT: 
 
High levels of vibrations can occur in floor systems due to excitation from human 
activities such as walking and aerobics. In building floors, excessive vibration is 
generally not a safety concern but a cause of annoyance and discomfort. Rectification 
measures for excessive vibrations in existing floor may include structural 
modifications to increase the floor stiffness or addition of damping. While structural 
stiffening can be easily designed and the corresponding effect be accurately predicted, 
it is often not practical due to space limitations or associated construction disruptions. 
The addition of mechanical dampers can be more practical and cost effectives for 
floors with low damping, but there are very limited proprietary systems available and 
they are difficult to design from first principles. This paper forms part of a research 
project which aims to develop an innovative cost effective Tune Mass Damper (TMD) 
using viscoelastic materials. Generally, a TMD consists of a mass, spring, and dashpot 
which is attached to a floor to form a two-degree of freedom system. TMDs are 
typically effective over a narrow frequency band and must be tuned to a particular 
natural frequency. The paper provides a detailed methodology for estimating the 
required parameters for an optimum TMD for a given floor system. The paper also 
describes the process for estimating the equivalent viscous damping of a damper made 
of viscoelastic material. Finally, a new innovative prototype viscoelastic damper is 
presented along with associated preliminary results. 
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1. Introduction 

The application of passive Tuned Mass 
Damper (TMD) is an attractive option in 
reducing excessive floor vibrations. 
Generally, a TMD consists of a mass, 
spring, and dashpot, as shown in Figure 1, 
and is typically tuned to the natural 
frequency of the primary system (Hartog 
1956). When large levels of motion occur, 
the TMD counteracts the movements of the 
structural system. The terms m1, k1, c1, X1 
represent the mass, stiffness, damping and 
displacement of the floor, while m2, k2, c2, Fig. 1 Schematic Representation of a 

Two DOF System 
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Fig. 2 Example Demonstrating the Effectiveness of a 
TMD 

X2 represent the mass, stiffness, damping and displacement of the TMD and F(t) 
represents the excitation force. As the two masses move relative to each other, the 
passive damper is stretched and compressed, reducing the vibrations of the structure 
by increasing its effective damping. TMD systems are typically effective over a 
narrow frequency band and must be tuned to a particular natural frequency. They are 
not effective if the structure has several closely spaced natural frequencies and may 
increase the vibration if they are off-tuned (Webster and Vaicaitis 1992). 

2. Optimal Design of Viscous Damper 

The natural frequency of the 
primary system can be split into a 
lower (f1) and higher (f2) 
frequency by attaching a spring 
mass tuned to the same 
fundamental natural frequency 
(fn) of the primary system as 
shown in Figure 2. The most 
significant design variable for the 
damper is the mass ratio (µ) as 
defined in Equation 1. When the 
mass ratio increases, the TMD 
becomes more effective and 
robust (Al-Hulwah 2005). In 
most applications the mass ratio 
is designed to be in the range of 
1-10%. 
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where m2 and  m1 are the mass of TMD and mass of primary system respectively. 
 
In the design of a TMD, the optimum natural frequency of the damper (fd) is defined 
by Equation 2; 
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and, the optimum damping ratio of damper (�opt) can be found as follows; 
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If there is zero damping then resonance occurs at the two undamped resonant 
frequencies of the combined system (f1 & f2). The other extreme case occurs when 
there is infinite damping, which has the effect of locking the spring (k2). In this case 
the system has one degree of freedom with stiffness of (k1) and a mass of (m1 + m2). 
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Using an intermediate value of damping such as �opt, somewhere between these 
extremes, it is possible to control the vibration of the primary system over a wider 
frequency range (Smith 1988). 

 
3. Conversion of Viscous Damper to Viscoelastic Damper 
 
A common and effective way to reduce transient and steady state vibration is to add a 
layer of viscoelastic material, such as rubber, to an existing structure. The combined 
system often has a higher damping level and thus reduces the unwanted vibration 
(Inman 1996). The complex form of equation of motion of a damped system is given 
by Equation 4; 
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where m, c, k, x�� , x� , x , F0, � and t are mass, damping, stiffness, acceleration, 
velocity, displacement, excitation force, excitation circular frequency and time 
respectively, and j is 1− . Equation 4 can be solved by assuming a solution of the 
form tjetx ωΧ=)( , where Χ  is a constant. Substitution of this assumed form into 

Equation 4 and dividing by non-zero function tje ω  yields; 
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The imaginary part of the complex stiffness represents the energy dissipation in the 
system, since dissipation loss factor of the system (�) has the form; 
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The simplest form of a viscoelastic 
damper is a constrained viscoelastic 
layer in a beam. This could be made 
of two constraining metal plates 
bonded together with high damping 
rubber as shown in Figure 3. This 
configuration can be extended to a 
multiple layer system, with N 
damping layers and N+1 
constraining elastic layers.  In this 
composite sandwich beam, the 
viscoelastic material experiences considerable shear strain as it bends, dissipating 
energy and attenuating vibration response (Mace 1994).  
 
(Mead 1982) developed a detailed analytical method to estimate the overall 
dissipation loss factor of the composite system (�) based on the dissipation loss factor 
of the rubber (�), thickness of rubber, geometric parameters and Young moduli of the 
top and bottom plates constraining the viscoelastic material. Boundary conditions 
have no significant effect in this method and can be applied to any composite beam 

Fig. 3 Constrained Viscoelastic Beam Cross-Section 
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configuration such as simply supported beam, cantilever etc. The overall loss factor of 
the composite system can be estimated by using Equation 7; 
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where � is the dissipation loss factor of the rubber and Y is a geometric parameter 
calculated as; 
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where E1 and E3 are the Young moduli of top and bottom constraining plates 
respectively, A1 and A3 are the cross-sectional area of the top and bottom constraining 
plates respectively, 1I ′  and 3I ′  are the moment of inertia of top and bottom 
constraining plates about their neutral axes respectively and d is the distance between 
the centroids of top and bottom constraining plates. 
 
The stiffness (EItotal) of the composite viscoelastic system can be calculated as 
follows; 
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where g represents the shear parameter which can be written as; 
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The natural frequency of a viscoelastic cantilever beam damper can be estimated as; 
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where k and m are the effective stiffness and mass of cantilever beam respectively and 
can be calculated as; 
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where E, I and l are the Young’s modulus, moment of inertia and length of composite 
viscoelastic cantilever beam respectively. The effective mass of a uniform composite 
cantilever beam can be calculated as; 
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where �, A and l are density, cross-sectional area and length of composite cantilever 
beam respectively. Given the conditions presented in Equations 1 & 2, for such a 
cantilever beam to act as an optimum viscoelastic damper, its length and mass can be 
calculated from Equations 12 & 13. 

4. Experimental Work 
A number of experiments were conducted as part of this study to examine the use of 
viscoelastic material (rubber) as a mean of providing damping. These experiments are 
summarised as follows: 
(a) Mechanical testing of commercial rubber specimens to determine the basic 
material properties. 
(b) Dynamic testing of simply supported steel beams with and without a constrained 
viscoelastic layer. 
(c) Dynamic testing of a steel beam with and without a TMD designed as a cantilever 
with a constrained viscoelastic layer. 
 
In this paper, items (a) and (b) above are discussed in detail below. Item (c) is not 
reported yet, however, corresponding finite element (FE) modelling is presented in 
Section 5. 
 
(a) Determination of basic mechanical properties of rubber 
As most commercially available rubbers do not have adequate technical specifications 
about their material properties, it was also necessary to undertake specific tests on the 
acquired rubber to determine its elastic modulus and loss factor. This was achieved by 
testing small specimens using a Dynamic Mechanical Analyser (DMA) machine (TA-
Instruments). The testing performed by this machine separates the viscoelastic 
response of a material into the two components of the complex value of modulus 
(E*): the real part corresponds to the elastic modulus (E') and the imaginary part 
refers to the damping or loss component (E"). The standard complex variable notation 
is E*= E'+ E".  The separation of the measurement into the two components describes 
the two independent processes within the materials-elasticity (energy storage) and 
damping (energy dissipation). This is the fundamental feature of dynamic mechanical 
analysis that distinguishes it from other mechanical testing techniques. The loss 
tangent (Tan δ) is the dissipation loss factor of the rubber and is calculated using 
Equation 14. 
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Three rubber samples of 35 x 10.8 x 5.2 mm were tested and the resulting average 
value of β was found to be 0.12. The higher the dissipation loss factor, the higher the 
damping that can be achieved using this rubber. 
 
The dissipation loss factor of the rubber can also be back calculated from vibration 
testing of the material and measuring the decay rate as described below. 
 
(b) Dynamic testing of simply supported steel beams with and without constrained 
viscoelastic layer. 
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Fig. 4 Decay Rate of Bare and Constrained Viscoelastic Damping Layer 

The aim of these tests was to examine the effectiveness of a constrained viscoelastic 
material in increasing the damping of beams. Two steel beams were made with each 
measuring 750mm long, 25mm wide and 4mm thick. The first beam was kept as a 
bare beam, while the second was bonded to a rubber layer of 12.5mm thickness which 
in turn was bonded to a constraining layer 1mm thick. The cross section of the second 
beam is identical to that shown in Figure 3. Both beams were subjected to pluck tests 
to obtain their dynamic properties and in particular damping. The vibrations were 
measured using a proximity sensor. The pluck tests were conducted several times to 
ensure repeatability. Typical results from the pluck tests are shown in Figure 4. 
 
The Logarithmic Decrement Method (LDM) was used to estimate the damping ratio 
of both the bare and that with constrained viscoelastic layer. The damping ratio of 
bare beam (�) was calculated to be about 0.7%. One the other hand, the value of 
overall damping ratio for the composite system (�) was calculated to be 3%. This 
significant increase in damping is due to the constrained rubber layer. This clearly 
demonstrates the effectives of such a simple technique in providing damping.  
 
As described earlier in part (a), the rubber dissipation loss factor could also be back 
calculated from vibration tests if access to a Dynamic Mechanical Analyser is not 
available. By substituting overall damping ratio of the composite beam as well as the 
other material and geometric properties in Equation 7, the dissipation loss factor � of 
the rubber can be estimated. Based on the provided details, the estimated value of � is 
0.11. This is in excellent agreement with the value obtained from the DMA results.   

It should be noted that the dissipation loss factor of the rubber (�) is the factor that 
determines the upper limit of overall dissipation loss factor of the composite system. 
In other words, the � value ( ζ2= ) of the composite system can not exceed � value 
the rubber (Mead 1982; Nashif, Jones et al. 1985). 
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5. Modeling of Viscoelastic Damper 
 
Using the constrained layer approach, a TMD was developed in the form of 
cantilever. This cantilever as shown in Figure 5 is attached using a rigid bracket to 
mid-span of beam or floor to be retrofitted. The mass, stiffness and damping 
properties of the cantilever could be easily tuned to obtain an optimum design. The 
process of tuning the cantilever damper with viscoelastic layer is identical to a 
conventional TMD with viscous dashpot as described using Equations 1, 2 and 3. 
 

 
To illustrate the effectiveness of the new cantilever damper, two FE models were 
developed. The first model was for a simply supported bare steel beam with 3m span, 
100mm width and 25mm thickness. This beam was then retrofitted with a TMD 
which was based on a cantilever damper with a constrained viscoelastic layer using 
the same rubber as reported earlier. The TMD was the optimum design with a mass 
ratio of 1%.  
 
The two FE models were excited using a harmonic force. A summary of the results is 
shown in Figure 6. In Figure 6, the exact solution for a beam with an equivalent 
viscous damper is also plotted. It is clear that the new cantilever damper does perform 
well, and it produces almost identical reduction in vibration to a conventional viscous 
damper. For the optimum cantilever damper the reduction factor in response is in the 
order of 4. This significant reduction in response will be validated experimentally.  

Fig. 5 Viscoelastic Damper, Attached to a Vibrating Beam 

End mass 

Constraining layer 

Rubber 

Constraining layer 

Vibrating beam 

Prototype Viscoelastic 
Cantilever Damper 
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6. Concluding Remarks 
 
This paper has detailed a methodology for developing an optimum tuned mass damper 
using viscoelastic material as a damping medium. For any given floor mass, damping 
and stiffness, an appropriate damper based on a constrained layer can be easily 
developed and tuned to reduce excessive vibrations. 
 
An experimental cantilever damper has been developed and used to validate the 
analytical model. The case study demonstrates that such a damper can be an 
economical and simple solution for retrofitting floors with excessive vibrations. 
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