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ABSTRACT: 
 
Due to changes in construction methods and new building layouts in recent years, 
human activities such as walking, dancing and aerobics have become major sources of 
floor vibrations. Excessive floor vibration is a cause of annoyance and discomfort to 
occupants. Excessive floor vibrations are realised after completion of construction or 
following structural modifications. Hence rectification measures would be required to 
minimise floor accelerations. This paper proposes a new innovative passive 
viscoelastic damper to reduce floor vibrations. This damper can be easily tuned to the 
fundamental frequency of the floor and can be designed to achieve various damping 
values. This paper discusses the analytical development of the damper and further 
experimental results are presented to demonstrate the effectiveness of the developed 
damper. 
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1. Introduction 
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Mechanical dampers can be installed more 
cheaply than structural stiffening and are 
often the only practical mean of vibration 
control in existing structures (Webster and 
Vaicaitis 1992). One form of mechanical 
damper is the Tuned Mass Damper (TMD) 
system as illustrated by Figure 1. In such 
systems the damper mass (m2) and spring 
stiffness (k2) are tuned to have the same 
natural frequency as the primary system. 
The addition of damping (c2) to the TMD 
reduces the overall response of the 
combined system as shown in Figure 2. 
TMD systems are typically effective over a 
narrow frequency band and must be tuned to 
a particular natural frequency. They are not 
effective if the structure has several closely 
spaced natural frequencies and sometimes 
they increase the vibration if they are off-
tuned (Webster and Vaicaitis 1992). A TMD 
splits the natural frequency of the primary 

Fig. 1 Systematic two DOF 

Fig. 2 Example showing the effects of 
attaching a TMD to SDOF system 
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system into a lower (f1) and higher frequency (f2) as shown in Figure 2. If there is zero 
damping then resonance occurs at the two undamped resonant frequencies of the 
combined system (f1 & f2). The other extreme case occurs when there is infinite 
damping, which has the effect of locking the spring (k2). In this case the system has 
one degree of freedom with stiffness of (k1) and a mass of (m1+m2). Using an 
intermediate value of damping such as ζopt, somewhere between these extremes, it is 
possible to control the vibration of the primary system over a wider frequency range 
(Smith 1988). In the optimum damper the values of damper’s natural frequency and 
damping ratio (ζopt) are specified to obtain minimum and equal height peaks at f1 & f2  
(Puksand 1975). 

2. Viscoelastic Damper Design 
 
Floor vibrations due to human excitation typically produce very small displacements 
(less than 1 mm). This small displacement would require a highly sensitive viscous 
damper to reduce the floor vibrations to the accepted level. It would be very difficult 
to produce a practical viscous damper that provides a reasonable level of damping 
with such small displacements and consequently an alternative equivalent viscoelastic 
damper has been investigated. 
 
A common and effective way to reduce 
transient and steady state vibration is to 
add a layer of viscoelastic material, such 
as rubber, to an existing structure. The 
combined system often has a higher 
damping level and thus reduces  
unwanted vibration (Inman 1996). The 
simplest form of a viscoelastic damper is 
a constrained viscoelastic layer in a 
beam. This could be made of two 
constraining metal plates bonded 
together with high damping rubber as 
shown in Figure 3. In this composite 
sandwich beam, the viscoelastic material experiences considerable shear strain as it 
bends, dissipating energy and attenuating vibration response (Mace 1994).  

Fig. 3 Typical sandwich beam 

 
There are many factors which affect the damping performances of viscoelastic 
materials including temperature, thickness and bonding. The damper discussed in this 
paper is for interior use so the variation in the temperature is not very significant 
whilst the resin used for bonding the layers must not allow slip to occur at the 
interface of layers.  The two main variable factors to be taken into the account for the 
design of the damper are the viscoelastic material type and thickness. 
 
An analytical method is used to estimate the overall dissipation loss factor of the 
composite system (η) based on the dissipation loss factor of the viscoelastic material 
(β), thickness of viscoelastic layer, geometric parameters and Young moduli of the top 
and bottom plates constraining the viscoelastic material. The analytical model 
considers that the core resists the shear but no direct flexural stress, shear strains in 
the face plates are negligible, transverse direct strains in both core and face plates are 
neglected and no slip occurs at the interfaces of the core and face plates (Mead and 
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Markus 1969). Boundary conditions have no significant effect on the loss factor and 
the following method can be applied to any composite beam configuration such as 
simply supported beam, cantilever etc. The overall loss factor of the composite system 
can be estimated by using Equation 1; 
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where β is the dissipation loss factor of the rubber and Y is a geometric parameter 
calculated as; 
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where E1 and E3 are the Young moduli of top and bottom constraining plates 
respectively, A1 and A3 are the cross-sectional area of the top and bottom constraining 
plates respectively,  and 1I ′ 3I ′  are the moment of inertia of top and bottom 
constraining plates about their neutral axes respectively and d is the distance between 
the centroids of top and bottom constraining plates. 
 
The shear parameter (g) can be written as; 
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where G, b and h2 are shear modulus, width and thickness of the damping layer 
respectively and KB is the wave number of  beam. 
 
When the core shear stiffness is very low, the constraining layers dominate the 
flexural stiffness of the beam and the sandwich beam vibrates in the same mode as an 
Euler-Bernoulli beam (Mead and Markus 1970). 
 
The wave number KB is related to the flexural rigidity of the constraining layer (EI), 
mass per unit length (ρ) and natural frequency of the beam (ω) and for a system 
without an end mass the wave number can be calculated using Equation (4); 
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For a system with a thick and thin constraining layer, it can be assumed that the thick 
layer dominates the flexural rigidity of the system and beam vibrates in the same 
mode of the thick layer. An expression was derived from first principles of Euler-
Bernoulli beam for a cantilever beam with an end mass to calculate the wave number. 
The assumption used in the derivation of Equation 5 is that the slenderness ratio of the 
beam is ≥ 10; 
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where ρ, A, L and mend  are mass density, cross-sectional area, length of the thick 
constraining layer and end mass respectively. Equation 5 can be numerically solved to 
obtain the value of the wave number. The flexural rigidity (EItotal) of the composite 
viscoelastic system can be calculated using Equation (6); 
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The natural frequency of the viscoelastic cantilever beam damper can be estimated as; 
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where k and m are the effective stiffness and mass of cantilever beam respectively and 
can be calculated as; 
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where EI and L are the flexural rigidity and length of composite viscoelastic 
cantilever beam respectively. The effective mass of a uniform composite cantilever 
beam can be calculated as; 
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where ρ, A and L are density, cross-sectional area and length of composite cantilever 
beam respectively and mend is a mss at the tip of the composite beam. 

 
3. Optimum Viscoelastic damper 
 

Fig. 4 RC T-beam cross-section 

To illustrate the effectiveness of the 
proposed tuned mass viscoelastic 
damper, a prototype was built for use 
on a reinforced concrete T-beam. 
The  9.5m long beam is simply 
supported at the ends and simulates a 
proportion of a typical long span 
floor construction, with a cross-
section shown in Figure 4. The 
properties of the bare T-beam are: 
effective mass m1 = 3091 kg, 
natural frequency fn = 4.2 Hz and the damping ratio ζ = 2.88%. The properties of the 
optimum viscous damper with a mass ratio (μ) of 1% are m2 = 30.91 kg and ζopt. = 
6.02%.  
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A commercial rubber with a dissipation 
loss factor (β) of 0.2 was used to 
develop the viscoelastic damper. The 
geometry, natural frequency and 
dissipation loss factor of the damper 
were calculated using Equations (1-9) 
and the properties of damper are listed 
in Table 1. The dissipation loss factor 
of this rubber is not sufficient to 
provide the optimum damping ratio of 
6% for the TMD with the thickness, 
width and length of the rubber and 
plates (a rubber with a higher 
dissipation loss factor would be needed 
to increase the damping). Table 2 
shows a very good correlation between 
the predicted damper properties and 
experiment results whilst Figure 5 
shows both the damper with the end 
mass and the time history response of 
the damper under a pluck test. 

Table 1 Viscoelastic damper properties 
Length (L) 510mm 
Width (b) 100mm 
Thickness of top constraining layer (steel) 6mm 
Thickness of  rubber (h2) 38mm 
Thickness of bottom constraining layer 
(steel) 

6mm 

Dissipation loss factor of rubber (β) 0.2 
Rubber shear modulus 527331 

N/m2

End mass (mend) 30 Kg 
Natural frequency of damper 4.1 Hz 
Damping ratio (ζ) of damper 4.5% 

Table 2: Validation of analytical model 

Parameter Analytical 
Model 

Experiment 

Natural frequency of 
damper ( f d) 

4.1 Hz 
Eq. 7 

4.2 

Damping ratio (ζ ) 4.5% 
Eq. 1 

4.1% 
(ζ= η/2) 
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ζ = 4.1%

Fig. 5 Proposed three layers viscoelastic damper  

4. Floor with Viscoelastic Damper Attached 
 
The bare floor was excited by heel drops 
to measure the natural frequency, 
response acceleration and damping ratio. 
The viscoelastic damper was attached to 
the floor using a steel bracket as shown 
in Figure 5. The damper was tuned to the 
natural frequency of the floor of 4.2 Hz. 

Table 3 Comparison of results 

Measure Analytical model Experiment 

Reduction in PSD 3.6 4 

Damping ratio (ζ) 5.5% 6.1% 
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Fig. 6 Floor response due to heel drops excitation  

Figure 6 shows the power spectral density (PSD) due to the heel drop excitation for 
both cases with and without damper. The units of the PSD depend on the transformed 
data and for the acceleration Fast Fourier Transform (FFT) the units are  
i.e. square of the acceleration per Hz. Figure 6 shows that the reduction factor in PSD 
is about 4 which means the actual value of reduction in the acceleration is 2. Based on 
the heel drop test and idealising the response of the T-beam to a SDOF system, the 
overall damping ratio of the T-beam with damper was found to be 6.1% using the 
logarithmic method. Figure 7 clearly shows the increase of damping in the time 
history response of the T-beam whilst the experimental and analytical results were 
also found to be in good agreement as shown by Table 3.  
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Fig. 7 Time domain decay of bare and with damper attached under heel drop excitation 

The sensitivity of the viscoelastic damper to a variation in its natural frequency was 
also investigated. Figure 6 shows that the efficiency of the damper was considerably 
affected by increasing the frequency by 10% by modifying the end mass. 
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5. Concluding Remarks 
 
This paper has presented a summary on the development of a viscoelastic tuned mass 
damper for floor applications. The proposed damper is based on the concept of a 
sandwich beam with the energy dissipation by shearing of a constrained rubber layer. 
 
A prototype was built for use on a reinforced concrete T-beam with 9.5m span. An 
analytical model was used to predict the required optimum damper for this T-beam 
and the predicted properties of damper were in excellent agreement with the test result 
on the damper in terms of its natural frequency and damping ratio. 
 
The T-beam was tested under heel drops and walking excitation with and without the 
viscoelastic damper. Without the damper, the T-beam had a measured damping ratio 
of 2.9% whereas the overall response was halved with a corresponding increase in 
damping to 6.1% with the addition of the TMD. The measured reduction in response 
due to the damper was in excellent agreement with the analytical prediction.  
 
With success of this viscoelastic damper, the researches are currently extending the 
technology to a multi damper configuration. 
 

6. References 
 
Inman, D. J. (1996). Engineering Vibration, Prentice-Hall, Inc. 
Mace, M. (1994). "Damping of beam vibrations by means of a thin constrained 

viscoelastic layer: Evaluation of a new theory." Journal of Sound and 
Vibration 172(5): 577-591. 

Mead, D. J. and S. Markus (1969). "The Forced Vibration of a Three-Layer, Damped 
Sandwich Beam With Arbitrary Boundary Conditions." Journal of Sound and 
Vibration 10: 163-175. 

Mead, D. J. and S. Markus (1970). "Loss Factor and Resonant Frequency of Encastre' 
Damped sandwich Beam." Journal of Sound and Vibration 12(1): 99-112. 

Puksand, H. (1975). "Optimum conditions for dynamic vibration absorbers for 
variable speed systems with rotating or reciprocating unbalance." The 
International Journal of Mechanical Engineering and Education. 3: 145-152. 

Smith, J. W. (1988). Vibration of structures application in civil engineering design, 
Chapman and Hall. 

Webster, A. C. and R. Vaicaitis (1992). "Application of Tuned Mass Dampers To 
Control Vibrations of Composite Floor Systems." Engineering 
Journal/American Institute of Steel Construction Third Quarter/1992: 116-124. 

 
 

 7


	1. Introduction
	2. Viscoelastic Damper Design
	Floor with Viscoelastic Damper Attached
	5. Concluding Remarks
	6. References

