
1. INTRODUCTION 
 
The seismic performance of buildings can be assessed using a capacity spectrum 
approach as illustrated in Figure 1. Provided the capacity curve of the structure 
intersects the seismic demand curve, the structure is deemed not to have collapsed at 
this return period event. In regions of high seismicity, the maximum displacement 
demand can be very large and as a result the structural performance is usually controlled 
by the constant velocity section of the demand curve as illustrated in Figure 1a. 
Consequently, structures must possess adequate lateral strength and displacement 
capacity to perform satisfactorily. In such regions, structures are deemed to fail when 
the lateral strength capacity has reduced to 80% of the design strength. 
 
In regions of lower seismicity, the maximum displacement demands are typically more 
modest. For example, a PGV of 50-60 mm/sec generated by a small to medium 
magnitude (M<6) earthquake, would result in a peak displacement demand of less than 
50 mm on a rock or stiff soil site. This peak displacement demand could more than 
double on a softer soil site. Structures may perform satisfactorily provided that the 
displacement capacity exceeds the displacement demand as shown in Figure 1b. 
Consequently, buildings that display a significant deterioration in lateral strength with 
increasing lateral displacement may not necessarily fail in such displacement-controlled 
conditions associated with the lower seismic regions.  
 
This paper examines the performance of reinforced concrete buildings that have a soft-
storey at ground floor level characterised by weak columns and strong beams. The 
objective of this paper is to develop a model that can predict the maximum displacement 
capacity of a reinforced concrete column, at which the column can no longer support 
gravitational loading. Flexure and shear-dominated columns are introduced in Section 2 
and 3 respectively, whilst a validation of the analytical model with experimental results 
is presented in Section 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)         (b)  
 

Figure 1 Capacity spectrum diagram of buildings characterised by (a) velocity-
controlled and (b) displacement-controlled behaviour 
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2. DISPLACEMENT CAPACITY OF COLUMN DOMINATED BY FLEXURE 
 
Columns that possess high shear span-to-depth ratio (for example greater than 3.5) are 
typically characterised by a flexural failure mechanism. The displacement limit for 
gravity load collapse is defined as the point where the moment of resistance of the 
section has reduced to a value equal to the moment generated from the “P-δ” effect. The 
significant reduction in moment of resistance of a section is due to crushing (spalling) of 
concrete following by buckling of longitudinal reinforcement in the compression zone 
as shown in Figure 2.  
 
The ultimate displacement at gravity load collapse can be estimated from a deformation 
model developed by the authors which includes an ultimate compressive strain model 
suggested by Paulay and Priestley [1992] and a bar buckling model modified from Bae 
[2005]. The deformation model which takes into account the deflection of the column 
from flexure, shear and yield penetration has been described in Rodsin [2004]. The 
unique feature of the proposed model is that the crushing of concrete and buckling of 
the longitudinal reinforcement on the compression side of the critical section is 
permitted even when the concrete has not been well confined by stirrups as shown in 
Figure 2. Crushing (spalling) of the unconfined concrete is assumed to occur at an 
ultimate strain limit of 0.006 based on results of tests conducted by the authors [Rodsin 
2004]. When this happens, the part of the concrete section which is within the ultimate 
strain limit is assumed to contribute to the residual flexural strength as shown by the 
stress diagrams of Figure 2c whilst the concrete beyond the ultimate strain is ignored. 
The residual strength of the column is presented in the form of a moment capacity 
versus rotation (M-θ) relationship for the plastic hinge located at the base of the column. 
The moment demand at this location is given by equation (1). 
 

δ⋅+⋅= PhVM       (1) 
 
It is shown from the M-θ relationship that at the point of collapse, the moment 
generated by the P-δ term is equal to the residual moment capacity of the column 
section (refer Figure 2d). 
 
3. DISPLACEMENT CAPACITY OF COLUMNS DOMINATED BY SHEAR 
 
A shear failure mechanism is likely to dominate the ultimate behaviour of columns with 
low shear span-to-depth ratios. Column shear failure occurs when the shear demand 
exceeds the residual shear strength capacity as shown in Curves 2 and 3 of Figure 3. In 
contrast, column shear failure is suppressed and the column fails in flexure when the 
residual shear capacity is higher than the maximum inferred shear force demand as 
depicted in Curve 1 of Figure 3. 
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        (a)           (b)    (c)             (d)
    
Figure 2 Flexural failure mechanism of a column ; (a) a column supporting a soft-storey 
building subject to lateral force, (b) photo of a column failed in flexure (c) stress 
diagram at the critical section of a column subject to increasing lateral deformation, (d) 
moment – rotation (M-θ) relationship at the critical section of a column. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Deformation at onset of shear failure 
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                (a)       (b)           (c) 
 
Figure 4 (a) Onset of shear failure, (b) additional displacement due to rotation at critical 

shear failure plane after onset of shear failure and (c) photo of column shear failure 
 
The onset of shear failure is expected to occur when the degraded shear force capacity 
of the column intersects with the shear force demand (refer Figure 3). The modified 
compression field theory (MCFT) first proposed by Vecchio and Collin [1986] can be 
used to construct the “ductility dependent residual shear strength” relationship shown in 
Figure 3, whilst the shear force demand relationship (inferred from the force-
displacement relationship of the column) can be calculated using the model developed 
in Section 2. The simplified shear failure mechanism is shown schematically in Figure 4 
(the authors have developed a more detailed model that includes the effect of a 
degrading shear force on the column, but this is beyond the scope of the paper and 
consequently the model presented assumes that the column shear force V has degraded 
to a value close to zero). 
  
It was observed by the authors from recent experimental investigations that if slippage 
does not occur along the shear failure surface, then the column may rotate by a small 
angle α about the compression edge causing the crack to open slightly as shown in 
Figure 4b. The additional column deformation (δadd) associated with this crack opening 
can be found by substituting the maximum crack width (w) as calculated from equation 
(6) into equations (2a) and (2b).  
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ch

sinw θ
=α        (2a) 

 

arm
c

armadd L
h

sinwL θ
=⋅α=δ       (2b) 

 
where α is the angle of crack opening, θ is the angle defining the orientation of the 
crack, hc is the width of the concrete core and Larm is the distance between the tip of the 
column and the rotation point (H). 
  
It is noted that although the angle of crack opening (α) is generally very small, the 
associated increase in the displacement capacity of the column can be significant due to 
the column geometry. The calculated column deflection at the point of gravity load 
instability (collapse) may include the additional displacement (δadd) associated with the 
crack opening. The remainder of this section describes in detail the proposed 
methodology for calculating the maximum crack width (w).  
 
Gravity collapse or slippage is deemed to occur when the gravity load component 
resolved in the direction of slip along the shear failure surface ( θcosP ) approaches the 
resistance to slip from the contribution of both the stirrups and the aggregate interlock 
as described in equation (3a) (It is conservatively assumed that the longitudinal steel 
reinforcement has buckled and therefore does not contribute to an increase in the normal 
force N on the shear failure surface). In equation (3a), P is the gravity load, Fvy is the 
stirrup yield strength, S is the stirrup spacing and Vci is the shear resistance attributed to 
aggregate interlock. Angle θ can be estimated using MCFT or alternatively, a 
conservative value of 30o may be assumed. 
 

ci
c

vy Vcos
S
hFcosP +θ=θ     (3a) 

 

    θ−θ=∴ cos
S
hFcosPV c

vyci     (3b) 

 
The normal stress on the shear failure surface (σ) can be calculated by resolving forces 
in the direction normal to the shear failure surface as shown by equation (4). 
 

bh
sinN

c

θ
=σ   and θ

θ
+θ= cos

tanS
hF

sinPN cvy     (4) 

 
where N is the force applied normal to the shear failure surface. 

 
The shear resistance (Vci) required at the failure surface of the column to support a 
given gravitational load P can be calculated from equation (3b) and substituted into 
equation (5) to solve for vcimax, the maximum shear stress parameter. 
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where b is width of the column section.  
 
The maximum crack width (w) which corresponds to vcimax can be obtained from 
equation (6) based on the model developed by Walraven [1981]. 
 

maxci

maxcic

v12
)16C()v36.0f(

w
+⋅−′

=    (6) 

 
where cf ′  is the compressive strength of concrete and C is the maximum aggregate size 
(mm). This value of w can then be used to solve for δadd using equations (2a) and (2b). 
 
4. MODEL VALIDATION 
 
A model has been developed by the authors for determining the force-displacement 
behaviour of the columns that are either dominated by flexure or by shear. Separate 
models have also been developed for predicting the ultimate displacement at which 
gravity load collapse occurs (refer Sections 2 and 3). The force-displacement 
relationships calculated in accordance with the models developed are shown in Figures 
5a-5b along with relationships obtained experimentally from a quasi-static experiment 
undertaken by the authors. The comparisons show that the displacement limits predicted 
by the models are generally consistent with the experimental results. For a column 
failing in shear, the additional displacement capacity attributed to crack opening (ie. 
rotation about the edge of the failure surface) is represented by the right-hand side of the 
“prediction” relationship shown in Figure 5b. The proposed deformation model is 
conservative since only rotation at the failure surface has been considered. In reality, the 
opening of other shear cracks contributing to additional rotations of the column was 
observed from the experiment. 
 
The proposed models have been further evaluated using a more extensive database of 
experimental results reported in the literature. Results of the evaluation are presented in 
Figure 6 which correlates the predicted displacements at failure with experimental 
observations. The statistical parameter characterising the quality of the correlation is 
presented in Table 1 which indicates that the proposed model is an improvement to the 
three other predictive models commonly referenced in the literature.  
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     (a) Flexure-dominated Column  (b) Shear-dominated column 
 

Figure 5 Force-displacement relationships of flexure and shear-dominated column 
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        (a)               (b) 
 

Figure 6 Comparison between predicted and experimental observations ultimate 
deformation for (a) flexural failure and (b) shear failure column   

 
 

Table 1 Comparison of experimental versus predicted ultimate column displacement 
using 4 different models 

 
 Flexure-Dominated Column Shear-Dominated Column 

Model Exp./Predt. 
(Average) 

Exp./Predt. 
(SD) 

Exp./Predt. 
(Average) 

Exp./Predt.  
(SD) 

Proposed Model 1.12 0.17 1.06 0.27 
FEMA-273, 1997 1.94 1.08 1.64 1.01 

Panagiotakos et al, 2001 1.16 0.56 1.07 0.40 
J.P. Moehle et al, 2002 N.A. N.A. 1.67 1.17 
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5. CONCLUSIONS 
 
The concept of displacement-controlled behaviour has been introduced in this paper 
whereby the ultimate drift limit is based on the condition when gravity loading can no 
longer be supported by the damaged column. An analytical model for predicting the 
ultimate deflection of the column dominated either by flexure or by shear has been 
developed. The predictions obtained from the model show good agreement with 
experimental results obtained from tests performed by the authors and that collated from 
the international literature. The development of the gravity-collapse model for 
estimating the displacement capacity of soft-storey columns forms an important part of 
the displacement-based methodology for assessing the seismic performance of building 
structures.  
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