

Stresses in the Australian Continental Tectonic Plate - Variability and Likely Controls

Max Lee - AMC Consultants Pty Ltd

Peter Mikula - Mikula Geotechnics Pty Ltd

Leigh Mollison - AMC Consultants Pty Ltd

James Litterbach - Mining Measurement Services Pty Ltd

AEES Ballarat 2008

1

Why am I in Ballarat?

Spying - looking over the fence!!

We "miners" have ground control / stability issues associated with seismic events, particularly in deep "highly stresses' underground mines.

While we have a range of procedures and techniques for "predicting" and "managing" these events, they do not always work

So what can I find out about your approach to earthquake engineering? and are there equivalent applications to stability issues in mines

Exchange information

What can I tell you "earth-quakers" about rock stresses, which we "miners" think we know something about, and which should be of fundamental interest to you quakes?

Earthquakes

Definition:

SIGNIFICANT SUDDEN PACKAGES OF NATURALLY RELEASED ENERGY – THAT ARE OF SOCIAL AND (CIVIL) ENGINEERING INTEREST

Characteristics:

- Location (longitude, latitude and depth)
- Duration (tens of seconds?)
- Magnitude / Moments
- Frequency
- Focal mechanism
- Associated with shearing on specific and regional geologic features

AEES Ballarat 2008

3

Seismic Events

Definition:

SUDDEN PACKAGES OF NATURAL + MINING-INDUCED STRAIN ENERGY – THAT ARE OF SOCIAL AND (MINING + CIVIL) ENGINEERING INTEREST

Characteristics:

- Location (northing, easting, RL)
- Duration (a few seconds similar to large stope blasts)
- Magnitude / Moments
- Frequency (high to low)
- Focal mechanism (shear, explosive, implosive)
- Associated with specific structures, failure through intact rock and collapse

Seismic Event - Prediction

The following would be nice!!

- Timing Tuesday 16 at 13.34hrs
- Location 25m below 18 Level @ 5285N, 3456E
- Magnitude 3.5 ML
- Frequency 20 Hz
- Duration 0.3 secs
- Mechanism Shearing on Fault X (dip 75, dip direction 125); maximum of 15mm shear displacement over an area 150m x 50m (strike / dip)
- Load Redistribution To areas X, Y and Z
- Are more events possible > 1.0 M_L? No

AEES Ballarat 2008

11

Seismic Events – Prediction (Mobilised Shear Stress vs Structures)

AMC

- Oval, Lordo ot
- Lilac Hill etc
- Steep south dippers

Company Policy – The Driver

No Harm

Everybody goes home safely – every day

Nobody is allowed to work beneath unsupported ground – no exceptions

- Screen +
- Bolts

AEES Ballarat 2008

15

Company Policy – Acceptance of Risk

	Consequence					CONSEQUENCE DEFINITIONS		
Likelihood	Insignificant	Minor 2	Moderate 3	Major	Catastrophic 5	Level	Safety	Environment
A Almost Certain	11	16	20	23	25	Insignificant	Minor Injury (> \$1,000)	Confined to immediate work area, rapid clean up, no damage to environment.
B Likely	7	12	17	21	24			
C Possible	4	8	13	18	22	Minor	MTI/RWI (> \$10,000)	Confined to specific area currently impacted by operations rapid clean up, little damage to environment.
D Unlikely	2	5	9	14	19			
E Rare	1	3	6	10	15			
Low Moderate High Extreme						Moderate	Lost Time Injury > \$100,000	Impact confined to within lease boundary, local environment
RISK ASSESSMENT LIKELIHOOD DEFINITIONS								
Almost Certain	Event is a common or frequent occurrence (daily)						- 9100,000	naturally recoverable
Likely	Event is expected to, or has occurred under some conditions (weekly/monthly)					Major	Multi-LTI/ Hospital > \$1,000,000	Major environmental impact, considerable clean up using site and external resources, extends past lease boundary
Possible	Events will probably occur, or has occurred, under some conditions (yearly)							
Unlikely	Event could occur at some time, or has happened elsewhere (every 10 years or so)					Catastrophic	Fatality/ Disability > \$10,000,000	Severe environmental impact, local species destruction, extensive clean up and long recovery
Rare	Event is not expected to occur, but may under exceptional circumstances							

Ongoing Seismicity Investigations

- Monitor events time, location, magnitude etc etc etc)
- Record mining context and performance of openings
- Accumulate associated data (structures, rock stresses, rock properties)
- Analyse (plot, graph, scratch and drink lotsa coffee!!)
- Fund R&D and "look over the fence"

AEES Ballarat 2008

17

R&D

- Lots of discussion / papers with Peter Mikula and (lately) Stephen Fraser
- R&D undertaken by the Australian Centre for Geomechanics (ACG)
- The odd chats with Gary Gibson
- Seminars (2) on Earthquake Building Codes
- 2008, Ballarat rock stresses
- Future?

Special Eastern Australian Ground Control Ground (EAGCG) meeting?

Background - Max

Qualifications - Geology (BSc Hons) + Civil Engineering (MSc)

Profession - Geotechnical Engineer (34 yrs; Mt Isa Mine, CSIRO, AMC)

Interests:

- Geology
- Structural Geology
- Ground Behaviour
- Rock Stresses
- Rock Properties
- Tectonics

AEES Ballarat 2008

19

Rock Stresses

- Old Engineering Theory
- Indicators
- Measurements

20

Old Theory

Just due to the weight of overburden rocks??

- Vertical component = σV = major principal stress = ρ g Depth
- Horizontal components = σH and $\sigma h = [v / (1 v)] \rho g Depth$

AEES Ballarat 2008

21

Indicators

- Geological grains, folding and faulting
- Boreholes breakout and drilling induced fractures
- Underground Openings high stress spalling
- Mining-induced Seismicity shearing (new and pre-existing structures)

22

Insitu Rock Stress Measurements - Australia

- 40+ years
- 1000+ in situ measurement sites (hydraulic fracturing, overcoring etc) – mostly at mines and civil engineering projects
- Depths up to 1.6km cf ≈ 35Km thick continental crust (SHALLOW!!)

"What's does the data tell us?

Measurement Specification: CSIRO HI Cells

Elastic isotropic rock

Holes oriented to **avoid undesirable high stress effects** - borehole breakout, discing, tensile stresses, excessive strains etc

Overcore at least 1.5 "diameters" away from opening

Various overcore sizes: 6 inch (142mm) and 74mm

To collect sufficient data, typically 3 successfully overcores per site

Measure strains to within 1° of ambient rock temperature, or correct - 1° ≈ 1MPa

Good rock property data is just as important as good overcore strain data

Analyse data in a consistent manner - after Worotnicki (1993)

Fully document results

Qualitatively rate the confidence that can be placed in each overcore and site result

Expect variability - after all it's rock!!

Overcoring not an appropriate measurement technique for some situations

AEES Ballarat 2008

Rock Stress Measurement - Oz Distribution

- Accepted methods (overcore and hydraulic fracturing)
- 3D
- Rating ≥ Fair
- 258 site measurements
- 145 deeper than 500m
- No coal, no civil
- Scattered
- Representative sample stresses in the Australian continental plate?

All Rock Stress Measurements are NOT Equal

Qualitative Rating depends on;

- Technique; Stress Relief (CSIRO HI cell, ANZI cell, CSIR cell, USBM cell, Door-stoppers, Borre cell, Borehole slotter, Flat Jacks etc), Hydraulic Fracturing, Acoustic Emission, Displacement Rate Analysis etc
- Experimental difficulties / procedures; poor rock, electrical, mechanical, thermal etc
- Amount of data collected; strains and rock properties ($\sigma = E \epsilon$)
- Assumptions; rock is NOT always a perfectly homogeneous, isotropic and linearly elastic material!!
- · Data analysis; assumptions of result per cell, result per site

AEES Ballarat 2008

Conclusion

- At any location a few local structures (orientation and shear strength) dictate the local rock stresses (principal stress orientations and ratios)
- The mobilised shear stress on these "stress-controlling-structures" is typically on / near their (large scale) shear strength
- Stress changes (eg reductions in normal load nearby mining) = shearing (eg plastic - creep; brittle - seismicity / earthquakes)
- A detailed knowledge of structures + stresses should lead to forward earthquake "prediction"

AEES Ballarat 2008

There's more!! | Constitution | Con

