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ABSTRACT 

Seismic assessment has traditionally been based on trading off strength with displacement 
(ductility) to provide sufficient energy dissipation capacity to structures. However, the 
energy demand on a structure from small to medium magnitude earthquakes will generally 
subside when the structure has been displaced to a certain limit. The significance of the 
concept of displacement-controlled behaviour in the seismic evaluation of a structure is that 
the peak drift demand of the structure can be constrained by a peak displacement demand 
which is solely a function of the properties of the ground shaking. In this paper, this 
concept has been extended for the seismic evaluation of asymmetrical structures. It is 
shown that a torsional amplification factor of 1.6 and 2.0 can be applied for estimating the 
peak drift demands of one-way and two-way asymmetric system respectively. By applying 
the new approach, the drift demand at the edges of the building can be estimated without 
applying the conventional force-based analysis. 
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1 Introduction 

With structures in which the fundamental natural period of vibration exceeds the dominant 
period of excitations, the energy (velocity) demand subsides rapidly with further increase in 
the natural period. Effectively, the displacement demand on the structures remains constant, 
or decrease, with increasing natural period as illustrated in Figure 1 by the displacement 
response spectra of a single pulse and series of periodic pulses (representing resonance 
conditions on flexible soil sites). 

This concept of displacement controlled behaviour has been extended to the evaluation of 
non-linear (inelastic) responding systems including a rocking object or a strength degrading 
system in which case the secant (or effective) stiffness is used for estimating the (effective) 
natural period of the system. The significance of this concept in the seismic evaluation of 
structural systems is that the peak drift (or deflection) of the structure can be constrained by 
a peak displacement demand (PDD) which is solely a function of the properties of the 
ground shaking. In other words, the structural drift demand can be estimated without the 
need to undertake a force-based analysis of the structure. Refer to previous publications by 
the authors (Lam & Chandler, 2005; Lumantarna et al. 2007, Lumantarna et al. 2008) when 
this concept was first introduced. 
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Figure 1  Displacement-controlled behaviour (Lam & Chandler, 2005) 

This paper further develops this concept of displacement controlled behaviour to structural 
systems that are subject to torsional actions arising from asymmetry. Force-based analyses 
can be computationally expensive for asymmetrical structures especially when dynamic 
torsion is involved. By applying the drift based analysis approach, a force-based analysis of 
the building model can be by-passed in the estimation of the drift demand at the edges of 
the building. Significantly, the estimated peak drift demand is independent of the torsional 
resistance of the building and its eccentricity (offset of centre of resistance to centre of 
mass). This new approach has been tested by comparison with results from non-linear time 
history analyses THA of asymmetrical building models subject to unilateral and bi-
directional excitations. The results from the studies were integrated to develop a simple yet 
reliable seismic assessment procedure for low to moderate seismicity regions.    

2 Peak displacement demand of non-ductile structures 

The maximum displacement demand PDD of single degree of freedom SDOF systems can 
be obtained from the elastic displacement response spectrum when linear elastic behaviour 
is assumed. The maximum displacement demand can be estimated as the highest 
displacement demand (RSDmax) as shown on the displacement response spectrum up to a 
natural period of 5 seconds. 



Figure 2a presents the displacement response spectrum on rock sites idealised as a bi-linear 
model. The maximum displacement response spectrum on rock sites RSDmax,rock can be 
estimated by Equation (1):  

2ð

T
Z1500RSD

rock2,
rockmax,          (1) 

where, Z is the seismic hazard factor stipulated in the Australian Standard (AS1170.4, 
2007), T2,rock is the second corner period at which the linear part of the response spectrum 
intercepts the constant (flat) part of the response spectrum (Fig. 2a). T2,rock is related to the 
moment magnitude M by the linear relationship proposed by Lam et al. (2000) : 

 5M5.05.0T rock,2       (2) 

for moment magnitude M less than 7. The maximum displacement demand PDD on rock 
sites (Fig. 2a) can be estimated for any combination of the hazard factor Z and moment 
magnitude M using Equations (1) and (2). 
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(a) Displacement response spectrum on rock sites (b) Displacement amplification on soft soil sites 

Figure 2 Displacement response spectra on rock and soft sites 

The maximum displacement demand can be significantly amplified when structures are 
founded on more onerous soil sites (PDD on soil site in Fig. 2b). Studies based on shear 
wave analyses (Lam & Wilson, 2004) have found that the maximum displacement demand 
on a soil site RSDmax,soil can be up to four times the displacement demand on a rock site at 
the site natural period (Fig. 2b) as shown by Equation (3): 

4)T(RSDRSD soil,2rocksoilmax,          (3) 

where, T2,soil is the site natural period at which the linear and constant (flat) parts of the bi-
linearised response spectrum intersects (Fig. 2b). RSDrock(T2,soil) is the response spectral 
displacement at the site natural period T2,soil as shown schematically in Figure 2b. By 
combining Equations (1)-(3), the maximum displacement response spectrum on soil sites 
can be expressed by the following equations: 

soil,2soilmax, T
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Z6000
RSD


   for T2,soil  0.5+0.5(M-5)    (4a) 
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
  for T2,soil   0.5+0.5(M-5)    (4b) 

where, Z is the seismic hazard, M is the moment magnitude and T2,soil is the site natural 
period. The maximum displacement demands (RSDmax) associated with the seismic hazard 



of Australia as stipulated in the Australian Standard (AS1170.4, 2007) were estimated 
based on Equation (4). The estimated RSDmax for 500 and 2500 year return period 
earthquake is presented in Table 1.  
Table 1 Estimates of RSDmax (mm) for Australian conditions 

Site Site period*
Z = 0.06 Z = 0.08 Z = 0.10 Z = 0.12 Z = 0.06 Z = 0.08 Z = 0.10 Z = 0.12

Rock T2,rock = 1.5 s** 21 29 36 43 39 52 64 77

Ts = 0.6 s 34 46 57 69 62 83 103 124
Ts = 1.0 s 57 76 95 115 103 138 172 206
Ts = 1.5 s 86 115 143 172 155 206 258 309

500 yr RP 2500 yr RP

Soil

 
*Site period of 0.6 s, 1 s, and 1.5 s refer to the site natural period which are representative of class C, D and E 
sites respectively as specified in AS1170.4 (2007). 
** The estimations of RSDmax on rock were based on M = 7 earthquake (T2,rock = 1.5 sec according to Eq 2)  

Parametric studies have been undertaken based on non-linear time history analyses of 
SDOF systems to extend the use of displacement response spectra in estimating the 
maximum displacement demands of non-ductile structures (Lumantarna et al., 2007; 
Lumantarna et al., 2008). Hysteretic models used in the studies are representative of 
hysteretic behaviour of common non-ductile structures, including soft-storey buildings and 
unreinforced masonry buildings.   

It was found from the parametric studies that despite having undergone significant strength 
degradation (up to 80%), SDOF systems were only displaced to a certain limit constrained 
by the highest point of the displacement response spectra (Fig. 3). The highest point on the 
displacement response spectra can be used to provide a conservative prediction of the 
maximum displacement demands (PDD) of inelastic non-ductile structures.    
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         M=5.5, R = 17 km, site class D          M=5.5, R = 17 km, site class D 

a) R = 2         (b) R = 4 

Figure 3 Displacement demands of SDOF systems subject to generated earthquake 

3 Peak displacement demand of asymmetrical building 

In situations where the center of resistance (CR) of the building is offset from the center of 
mass (CM) (Fig. 4a), the building will translate and rotate when subject to earthquake 
excitations. The translation and rotation can result in displacement amplification at the 
edges of the building as shown in Figure 4b. The maximum displacement could occur at the 
flexible or the stiff edge of the building depending on the dominant mode of vibration. The 
peak displacement demand referred in this section represents the higher of the two values. 



The maximum displacement demand of asymmetrical buildings can be estimated by 
applying a torsional amplification factor DD to the maximum response spectral 
displacement (PDD = DD RSDmax). The maximum displacement demand PDD of an 
asymmetrical building can be determined by calculating eigenvalues and eigenvectors of 
the equation of motion for a single storey building model as shown in Figure 4a. DD is 
defined as the ratio of the maximum displacement demand to the maximum response 
spectral displacement (ie. DD=PDD/RSDmax). Therefore, DD can be defined by Equation 
(5) when linear elastic behaviour is assumed (Lumantarna et al. 2007): 
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where, PF1 is the participation factor for mode 1, 1è�  is the rotational component of mode 1 
defined by Equation (6).  
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1 is the 1st coupled circular frequency which can be related to the uncoupled frequency  
ratio (k=1/r (kè/ky)

1/2) and the distance from the center of resistance to the center of mass 
normalised to the mass radius of gyration (e) as shown by:  
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From Equations (5), (6) and (7), the value of DD can be determined for any combination of 
e (eccentricity) and k (uncoupled frequency ratio). 
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Figure 4 Single-storey building model 

Field surveys on soft-storey (Wilson et al. 2005) and URM buildings (Griffith et al. 2004) 
showed that the eccentricity (e) and uncoupled frequency ratio (k) of the buildings (both 
parameters normalised to the mass radius of gyration r) were between 0.05 to 0.6 and 0.8 to 
1.6 respectively. The distance from the center of mass to the flexible or stiff edge 
normalised to the mass radius of gyration (b/r) was less than 1.8. Equations (5) to (7) were 
used to determine the values of DD using all combination of e and k likely to be found in 



real buildings (Figure 5). It was found that the value of DD is insensitive to the variations 
in e and k. From the above observations, Equation (5) can be simplified to: 
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where, b is the distance from the building center of mass to the flexible or the stiff edge 
(Fig. 4b), whichever is the greater, and r is the mass radius of gyration of the building. The 
value of DD was estimated to be up to around 1.6 for b/r less than 1.8. 
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Figure 5 DD with varying e and k values  

Parametric studies were undertaken based on non-linear time history analyses of a single 
storey building model shown in Figure 4a. The configuration of frames in the building on 
plan was adjusted such that the eccentricity (e) and the uncoupled frequency ratio (k) of 
the building was in the range 0.1 to 0.5 and 0.8 to 1.4 respectively. Hysteretic models of the 
frames in the building model are representative of that in unreinforced masonry walls and 
soft storey columns. 

Hysteretic modelling needs to take into account: i) stiffness degradation and ii) strength 
degradation. The modified Takeda model and the origin-centered model were selected to 
represent the stiffness degradation of soft-storey columns and unreinforced masonry walls 
(Fig. 6a). The hysteretic models were calibrated to the hysteretic curves as recorded from 
the cyclic testing of the soft-storey columns (Rodsin et al. 2004) and unreinforced masonry 
walls (Griffith et al. 2007). The strength degradation was modelled to degrade with 
increasing ductility (displacement) demand (Fig.6b). Sensitivity of the displacement 
response behaviour of SDOF systems to the modelling parameters has been investigated by 
the authors (Vaculik et al. 2007; Lumantarna et al. 2006).   
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Figure 6 Modelling of stiffness degradation 



Simulated and recorded accelerograms on class C and D sites as stipulated by the 
Australian Standard (AS1170.4, 2007) were used in the parametric studies. These 
accelerograms listed in Table 2 are representative of small to medium magnitude 
earthquakes. The simulated accelerograms were generated based on earthquake scenarios 
producing a peak ground velocity of 60 mm/sec on rock (Lam et al. 2005).  
Table 2 List of accelerograms 

No Event M R PGV Site 
1 Generated  6.5 40 60 Class C 
2 Generated  6.5 40 60 Class D 
3 Generated  5.5 17 60 Class C 
4 Generated  5.5 17 60 Class D 
5 Generated 7 90 60 Class C 
6 Generated 7 90 60 Class D 
7 
8 

Friuli aftershock 
San Fernando  

5 
6.5 

7 
25 

100 
80 

Class C 
Class D 

Non-linear time history analyses were performed on the single storey building model using 
the modified Takeda model with parameters:  = 0 and  = 0. The initial stiffness of each 
frame was adjusted to produce initial uncoupled periods of the building which range 
between 0.2 and 2 secs. The yield strength of each frame was scaled such that the strengths 
of the building models were exceeded by the strength demands from the earthquake 
excitations by a factor (R) of 2 to 4 (Lumantarna et al. 2008). The rate of strength 
degradation was varied between 9% and 22% per unit increase in ductility demand (Fig. 
6b). The strength was modelled to start degrading when the yield limit has been exceeded 
and continue to degrade until reaching the minimum residual strength (when 80% of the 
maximum strength has been degraded) (Fig. 6b). 

The maximum displacement demands at the edges of the buildings were plotted against 
their initial uncoupled periods in Figure 8. It was found that despite significant degradation 
of the torsional resistance of the building (up to 80%), the maximum displacement demands 
of the asymmetrical buildings analysed in the study were constrained by the peak 
displacement demand (PDD) as estimated by Equation (8). 

The torsional amplification factor as defined by Equation (8) and the non-linear THA 
results presented in Figure 8 were from a simplified model (based on parallel frames 
subject to uni-lateral excitation) (Fig. 4a). The contributions of load resisting elements and 
ground excitations in the orthogonal direction have been neglected. The maximum 
displacement demands from the simplified analyses based on unilateral excitations were 
compared to results from analyses based on bi-directional excitations. It was shown in 
Figure 9 that the response of realistic asymmetrical buildings to concurrent bi-directional 
excitations can be represented by the estimated response to uni-lateral excitations, provided 
that the center of resistance in the orthogonal direction is in alignment with the building 
center of mass. This type of asymmetry is denoted herein as Type A asymmetry as shown 
in Figure 7a. 
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Figure 7 Plan view of building models 
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Figure 8 Displacement demands of buildings with Type A asymmetry (e = 0.5, k = 0.8), subject to uni-
lateral excitations 
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Figure 9 Displacement demands of Type A asymmetry (e = 0.5, k = 1.3), subject to uni-lateral and bi-
directional excitations 

However, buildings with Type B asymmetry (Fig. 7b) were shown to be subject to higher 
displacement demands (compare Figs. 11 and 8). This is as a result of the asymmetry in the 
orthogonal direction which contributes to additional displacement demand at the edge of 
the building (Fig. 10). Equation (8) can be modified by adding the rotational component in 
the orthogonal direction (Fig. 10b) as defined by Equation (6b) to the maximum 
displacement demand defined by Equation (5). By substituting common values of e and k 
obtained from the field surveys (Wilson et al. 2005; Griffith et al. 2004), the torsional 
amplification factor (DD) which takes into account asymmetries in the orthogonal 
directions can be expressed as follows: 
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where, b is the distance measured from the center of mass to the edges of the building and r 
is the mass radius of gyration of the building. The value of DD was estimated to be up to 
around 2.0 for b/r less than 1.8. It was shown in Figure 11 that Equation (9) could provide 
conservative estimates of the maximum displacement demands (PDD) of buildings with 
asymmetries in the orthogonal directions (ie. Type B asymmetry as illustrated in Fig. 7b).  
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Figure 10 Schematic response of asymmetrical buildings          
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Figure 11 Displacement demands of buildings with Type B asymmetry (e = 0.5, k = 0.8) subject to bi-
directional excitations  

4 Concluding remarks 

A seismic assessment of asymmetrical structures in regions of low to moderate seismicity 
has been developed based on the concept of displacement-controlled behaviour. The 
potential seismic performance of a structure can be assessed by comparison of the 
displacement demand with the displacement capacity of the structure.  

The maximum response spectral displacement RSDmax associated with the seismic hazard 
of Australia was presented. Parametric studies based on non-linear time history analyses of 
SDOF systems revealed that the highest point on the displacement response spectrum can 
provide conservative predictions of the maximum displacement demand of the structure 
(PDD = RSDmax). Further studies on an asymmetrical single-storey building model resulted 
in a simple analytical model which can be used to estimate the torsional effect on 
asymmetrical buildings. One interesting finding is that the peak drift demands were found 
to be insensitive the torsional resistance of the building and its eccentricity. The proposed 
mathematical model can be extrapolated to estimate the peak drift demands of multi-storey 



buildings in which different levels could have varying torsional resistance and eccentricity. 
It was found that a torsional amplification factor (DD) of 1.6 and 2.0 can provide 
conservative estimates of the peak drift demands (PDD = DD RSDmax) of one-way and 
two-way asymmetric system respectively. The maximum displacement demand PDD can 
be compared to the displacement capacity of a building for a quick assessment of its 
potential seismic risks to collapse.  
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