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ABSTRACT 

Seismic design, or assessment, of buildings based on conventional force-based principles 

typically involves trading-off strength with ductility to provide sufficient capacity of the 

building to absorb energy in a controlled manner when excited into motions by an 

earthquake. In conditions of moderate ground shaking which is generated by a small or 

medium magnitude earthquake the energy demand on the building could subside with 

increasing effective natural periods. Consequently, the amount of drift imposed on the 

building could be limited irrespective of the degradation in strength or stiffness of the 

lateral resisting elements. Seismic response behavior of this nature can be explained by 

what is known as the displacement-controlled phenomenon.  The assumption of a peak 

displacement demand limit (which is function of the properties of the ground shaking) 

can potentially simplify the seismic design or assessment of a structure which is flexible 

or has the capacity to undergo large displacement without collapsing.  

A generalised response spectrum model which features displacement-controlled 

phenomenon was first developed to provide seismic response predictions assuming linear 

elastic behaviour. The model has since been further developed from results generated by 

parametric studies involving extensive non-linear time history analyses to incorporate the 

effects of inelastic behavior and torsional actions. The maximum drift demand on a 

building, of symmetrical or asymmetrical construction, can be conveniently estimated 

using the developed model thus circumventing the need to undertake time consuming 

modelling and computations.   

 

 

 

 

 

 



1. Introduction 

Seismic assessment has traditionally been based on trading-off between strength and 

ductility to allow the energy demand from an earthquake to be absorbed and dissipated in 

a controlled manner. The energy demand from small to medium earthquakes could 

subside with the increasing period of the building. Consequently, the peak displacement 

demand of the building is constrained to an upper limit as illustrated by Figure 1 for a 

building subjected to a single pulse and periodic pulses. The assumption of a peak 

displacement demand limit (which is a function of the properties of the ground shaking) 

can potentially simplify the seismic design or assessment of a structure which is flexible 

or has the capacity to undergo large displacement without collapsing. 

 
Figure 1 Displacement-controlled behaviour (Lam & Chandler, 2005) 

The concept of displacement-controlled behaviour has been used for the seismic 

assessment of unreinforced masonry parapet walls (Lam et al., 1995), unreinforced 

masonry walls subject to one-way bending (Doherty et al., 2002) and free standing 

objects (Al Abadi et al., 2006; Kafle et al., 2011). In this study, the seismic assessment 

based on the displacement-controlled behaviour is extended to non ductile buildings, of 

symmetrical and asymmetrical constructions. 

A generalised response spectrum model which features displacement-controlled 

phenomenon is presented in Section 2. The displacement response spectrum was 

developed to provide seismic response predictions assuming linear elastic behaviour. The 

developed predictions have been extended to account for the effects of inelastic 

behaviour (Section 3) and torsional actions (Section 4). 

2. Displacement response spectrum and peak displacement demand in an 

earthquake 

The peak displacement demand of a structure in an earthquake can be estimated from the 

maximum point of the displacement response spectrum. In this study, the proposed 

displacement response spectrum is presented in the response spectral displacement (RSD) 

format in the bi-linear form (Figure 2) and defined by the following expressions:  

2

maxRSD
RSD(T ) T

T
   for T T2     (1a) 

maxRSD(T ) RSD   for T > T2     (1b) 

Where RSDmax is the peak displacement demand and T2 is the second corner period. 
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The proposed displacement response spectrum is truncated at the limiting period of 5 sec. 

The estimated values of RSDmax based on the period range of up to 5secs can be used for 

the stability assessment of a wide range of structures, such as free standing objects (Al 

Abadi et al., 2006; Kafle et al., 2011), unreinforced masonry walls (Doherty et al., 2002; 

Lam et al., 1995) and soft-storey structures (Lumantarna et al., 2011).  

 

Figure 2 Displacement response spectrum in the bi-linear form 

Extensive parametric studies have been undertaken by the authors (Lumantarna et al., 

2011) involving 168 records to evaluate existing predictive models for the peak 

displacement demand (RSDmax) and second corner period (T2). The parametric studies 

revealed the estimated (median) values of the RSDmax parameter are highly consistent 

across the different models except at short distances (eg. 10km). The mid-range values 

(along with the upper bound and lower bound values) predicted by the suite of models for 

various magnitude-distance combinations are shown in Table 1. 

Table 1 Median Model Predictions of Peak Displacement Demand RSDmax(mm) 

 R = 10 km R = 20 km R = 30 km R = 40 km R = 50 km 

M5.5 
23 

(15 – 30) 

15 

(10 – 20) 

10 

(5 – 15) 

8 

 

5 

 

M 6 
68 

(45 – 90) 

34 

(25 – 40) 

20 

(15 – 25) 
15 10 

M 6.5 
135 

(90 – 180) 

75 

(55 – 90) 

55 

(45 – 60) 

38 

(30 – 45) 

33 

(25 – 40) 

Notes :  

(a) Mid range values are shown. 

(b) Upper and lower bound values are shown in brackets where there are significant inter-model 

discrepancies. 

(c) Values shown in italics are much less well constrained and are associated with scenarios of very low 

probability of occurrences in a region of low-moderate seismicity. 

The value of T2 is not unique and is well known to be sensitive to the moment magnitude 

of the earthquake. In contrast to the predictions for the RSDmax values, the predictions of 

T2 values from the available predictive models (eg. AS1170.4, 2007; EN 1998-1, 2004; 

FEMA 450-1, 2003; Faccioli et al., 2004; Lam et al., 2000) are very diverse. However, 

the parametric studies undertaken by the authors (Lumantarna et al., 2011) have found 

that the predictive equation (Eq. (2)) by Lam et al. (2000) is consistent with field 

observations. 

       
   

 
        (2) 

where, M is the moment magnitude of the earthquake.  



The maximum displacement demand (RSDmax) in more onerous soil conditions can be 

significantly amplified. Site response analyses have been undertaken based on shear wave 

analyses using accelerograms generated by stochastic simulations. A total of 1600 

accelerograms on rock, shallow and deep soil sites were generated based on magnitude 

and epicentral distance combinations producing peak ground velocity PGV on rock 

which ranges from 20 to 100mm/sec. The accelerograms were generated by stochastic 

simulations using program GENQKE (Lam, 2002) and shear wave analyses using 

program SHAKE (Idriss & Sun, 1992). The range of PGV is consistent with hazard factor 

Z of 0.03 to 0.12 which is representative of seismic hazard in most capital cities in 

Australia including Melbourne, Sydney, Canberra, Adelaide, and Perth for 50 up to about 

2500 year return period (AS1170.4, 2007). It was found from the site response analyses 

that the amplification generally ranges between 3 and 5.  

Thus, the maximum response spectral displacement (RSDmax,soil) can be estimated as 

follows: 

4)( ,2max, soilsoil TRSDRSD      (3) 

where, RSD(T2,soil) is the response spectral displacement defined by Eq. (1).  

The displacement response spectrum model on a soil site of the bi-linear model then can 

be defined as follows: 

       
           

       
  for T  T2,soil     (4a) 

                    for T > T2,soil     (4b) 

The construction of displacement response spectrum on a soil site is shown schematically 

in Figure 3. 

 

Figure 3 Displacement response spectrum on soil site 

3. Peak displacement demand of non-ductile structure 

In this section, the use of displacement response spectrum is extended to estimate the 

peak displacement demand of non-ductile structures. Parametric studies based on non-

linear time-history-analyses have been undertaken by the authors (Lumantarna et al., 

2010). Hysteretic models used in the studies represent the hysteretic behavior of non-

ductile structures, such as unreinforced masonry wall and soft-storey columns, and 

feature strength degradation of up to 15% per unit increase in the ductility demand ratio.  

It was found from the studies that estimates based on the equal-displacement propositions 

in the displacement sensitive region of the response spectrum have been shown to be 

reasonably good and insensitive to considerable strength degradation (Fig. 4). In contrast, 
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it is shown in Figure 4 that estimates by both the equal-displacement and equal-energy 

propositions can be exceeded significantly by the inelastic displacement demands in the 

acceleration and velocity sensitive region. These anomalies are exacerbated by strength 

degradation behaviour. The displacement demand behaviour depends very much on the 

corner period parameter which characterises the frequency properties of the ground 

shaking. However, it was found that with a modest strength reduction factor of 2, the 

system’s inelastic displacement demand would typically be constrained by the peak 

displacement demand (PDD) which is defined by the maximum point on the elastic 

displacement response spectrum for 5% damping (RSDmax) irrespective of the initial 

natural period of the system. 

        
        (a)  R without strength degradation           (b) R with strength degradation 

          
        (c)  R without strength degradation     (d) R with strength degradation 

Figure 4 Elastic and Inelastic Displacement demands with Friuli earthquake 

4. Peak displacement demand of asymmetrical buildings 

In situations where the center of resistance (CR) of the building is offset from the center 

of mass (CM) (Fig. 5), the building will translate and rotate when subject to earthquake 

excitations. The translation and rotation can result in displacement amplification at the 

edges of the building as shown in Figure 5(b). It is postulated herein that the 

displacement demand on a torsionally unbalanced building could be constrained by an 

upper limit which is referred herein as the peak displacement demand (PDD). It is noted 

that maximum displacement could occur at the flexible or the stiff edge of the building 

depending on the dominant mode of vibration. The peak displacement demand referred in 

this section represents the higher of the two values. 

The peak displacement demand (PDD) of an asymmetrical building has been estimated in 

this study using the response spectral analysis method assuming linear elastic behaviour. 

The displacement response of a torsionally coupled building can be determined by 

calculating eigenvalues and eigenvectors of the equation of motion as shown by Eq. (5).   

n n
2[ ] 0k m                       (5) 
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where n are the natural frequencies of a torsionally coupled building; k  and m  is the 

stiffness and the mass matrix respectively, as defined by Eq. (6). 
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 
 
  

k    (6a)     and     
2

m
 
 
  


m 0

0 r m
 (6b) 

where ky is the total lateral stiffness of the building in the y direction; k is the torsional 

stiffness about the center of mass; m is the mass; r is the mass radius of gyration; and es is 

the offset of the center of resistance from the center of mass. 

The mode shape vector n is given by Eq. (7). 

yn
n

θn






 
  
  

           (7)      

where n is the natural mode shapes of vibration of the n
th

 mode, consisting of 

translational and rotational components. 

Having determined the natural frequencies and the mode shapes of vibration, the 

contribution of the n
th

 mode (un) of vibration to the total displacement “u” of the building 

can be conservatively estimated by Eq. (8) assuming a constant value of the displacement 

demand (which is the value of RSDmax as defined by Fig. 5b): 

yn n yn maxu PF RSD         (8a) 

θ  θ maxn n nu PF RSD        (8b) 

where yn and n are the translational and rotational components of the n
th

 mode of 

vibration; PFn  is the participation factor of the n
th

 mode; and RSDmax is maximum point 

on the elastic displacement response spectrum. 

   
        (a) floor plan        (b) Peak displacement demand 

Figure 5 Amplification of displacement demands in an asymmetrical building 

The displacement demand values at the flexible edge flex,n and stiff edge stiff,n of the 

building for the n
th

 mode of vibration can be expressed in terms of the  translational and 

rotational displacement (as defined by Eq. (9a) and (9b)). 

flex,n yn θn 1 -   u u b                (9a) 

stiff,n yn θn 2Δ = u +  u b              (9b) 

where b1 and b2 are the offsets of the flexible and stiff edge of the building respectively 

from its center of mass. The displacement at the edges of the building for each mode of 
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vibration can be combined according to the square-root-of-the-sum-of-the square SRSS 

method or the complete quadratic combination (CQC) for torsional sensitive systems 

with closely spaced natural frequencies (Chopra, 2000). 

Field surveys on soft-storey buildings (Wilson et al., 2005) revealed that the normalised 

eccentricity (e) and uncoupled natural frequency ratio values (k =1/r (kθ/ky)
1/2

) of the 

building (both parameters have been normalised with respect to the mass radius of 

gyration r) ranges in between 0.05 to 0.6 and 0.8 to 1.6 respectively. The offset of the 

flexible, or stiff edge, of the building from its center of mass normalised with respect to 

the mass radius of gyration (b/r) was less than 1.8. The displacement demand values at 

the flexible and stiff edges of the building for each mode of vibration were calculated and 

combined using the SRSS and the CQC rules, in order that the value of the peak 

displacement demand (PDD) on individual edge elements in the building can be 

determined.  

The torsional amplification factor DD is presented in Figure 6 for a range of 

combinations of e and k values likely to be found in real buildings.  DD is defined as the 

ratio of the peak displacement demand value on the edge elements to the maximum 

response spectral displacement value (ie. DD=PDD/RSDmax). Figure 6 indicates that the 

SRSS rule provides conservative estimates of the peak displacement demands of the 

critical edge elements. Importantly, the value of DD was found to be insensitive to 

variations in the value of parameter: e and k. The value of DD was found to vary up to 

around 1.6 (for b/r less than 1.8) from the modal analysis described in this section. 

               
(a) SRSS rule     (b) CQC rule 

Figure 6 Torsional amplification factor DD using response spectral analysis 

Parametric studies were undertaken based on linear and non-linear time history analyses 

of single building models supported by three lateral resisting frames presented in Figure 

7(a). Refer to Lumantarna et al. (2010) for details of accelerograms. The frame elements 

were so disposed within the building in order that the values of eccentricity (e) and 

uncoupled natural frequency ratio (k) varied within the range 0.1 to 0.5 and 0.8 to 1.3, 

respectively. The initial stiffness of individual frames in the model was calibrated such 

that the uncoupled natural period of vibration of the building ranges in between 0.2 to 

2secs.  The strengths of the frames were assumed to be equal. The notional yield strength 

of each frames was adjusted in order that the strength of each frame was exceeded by the 

elastic strength demand by a factor (Fy=Elastic strength/R) of 2 to 4. Hysteretic models of 

the building were based on the estimated hysteretic behaviour of non-ductile structural 

components including soft-storey columns and unreinforced masonry walls. All the 

analyses were based on 15% degradation in strength per unit increase in the value of .  
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Meanwhile, control analyses assuming no strength degradation have also been 

undertaken. 

  
(a) Model A          (b) Model B 

Figure 7 Single-storey building models 

The peak displacement demand of elements at the edges and center of mass of the 

building are plotted in Figure 8 against their initial uncoupled natural period. Maximum 

displacement demand generally occurred at the stiff edge of a torsionally flexible 

building (which was characterised by low values of k).  On the other hand, the maximum 

displacement demand at the flexible edge was generally amplified in a torsionally stiff 

building (which was characterised by high values of k). This trend is consistent with the 

literature which reported favourable response for the flexible edges for the torsionally 

flexible building. However, contrary to the trend observed from the literature (eg. 

Rutenberg and Pekau, 1987; Chandler and Hutchinson, 1988), the peak displacement 

demand values based on elastic behaviour were generally shown to be insensitive to 

variations in the value of e and k. It is shown that the displacement demand values were 

all constrained by the PDD limit that has been estimated by applying a torsional 

amplification factor of 1.6 (PDD = 1.6 RSDmax).  

                
  (a) e = 0.3, k = 1.3                (b) e = 0.5, k = 0.8 

Figure 8 Elastic displacement demands of asymmetrical building with generated accelerogram class C 

The peak inelastic displacement demand on elements in asymmetrical buildings based on 

R = 2 and 4 are presented in Figure 9 for systems with and without strength degradation. 

The peak displacement demand values from analyses incorporating inelastic behaviour 

(but with no degradation in strength) were shown to be generally lower the peak 

displacement demand values based on elastic behavior (compare Figs 8(b) with 9(a) & 

(c)). The dissipation of energy by hysteretic means is considered to have reduced the 

element displacement demands. However, much higher displacement demand values 

have been observed from analyses which have incorporated strength degradation 

behaviour (Figs. 9(b) & (d)). The much higher displacement demand is as a result of 

accumulation of residual displacement. In such conditions, the notional PDD limit (PDD 

= 1.6 RSDmax) can be exceeded. 
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Despite significant strength degradation, the peak displacement demands of the edge 

elements in asymmetrical buildings were well constrained by the notional peak 

displacement demand limit (PDD) if the uncoupled natural period of the building was 

higher than the dominant period of earthquake excitations (Figs. 9(b) & (d)). It was 

shown further that with a modest strength reduction factor (R) of 2, the element inelastic 

displacement demands were also constrained within the PDD limit irrespective of the 

uncoupled natural period of the building. The robustness of the notional PDD limit in 

estimating the peak element displacement demand of the building has been demonstrated 

herein. 

        
(a) without strength degradation, R = 2         (b) with strength degradation, R = 2 

        
(c) without strength degradation, R = 4         (d) with strength degradation, R = 4 

Figure 9 Inelastic displacement demands of asymmetrical building with San Fernando earthquake 

The torsional amplification factor of 1.6 and results of THA as presented in Figure 9 were 

based on simplified building models featuring parallel frames and uni-lateral input 

excitations (model A in Fig. 7(a)). Contributions by frames which were oriented in the 

orthogonal directions have been neglected. The peak element displacement demand 

values of the simplified model (model A) have also been compared with displacement 

values of models of which orthogonal frames subject to bi-directional excitations (model 

B in Fig. 7(b)). The uncoupled natural periods of vibration of the building in the two 

orthogonal directions were assumed to be equal. The notional yield strength of each 

frame in the orthogonal direction has also been adjusted in order that the strength of each 

frame was exceeded by the strength demand by a factor of 2 to 4 (R = 2 - 4). The 

building was subject to excitations of equal intensity in both directions. 

Figure 10 shows correlation plots of displacement demand values of building models 

under uni-lateral and bi-lateral excitations. The displacement demand values of model A 

and model B were generally found to be well correlated. It is shown that the displacement 

demand behaviour of realistic asymmetrical buildings (those incorporating orthogonal 
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frames) subject to bi-directional excitations can be represented conservatively by the 

analyses of the simplified models (which feature uni-lateral excitations), provided that the 

center of resistance is in alignment with the center of mass in the orthogonal direction 

(model B in Fig. 7(b)).  

        
(a) without strength degradation, R = 2        (b) with strength degradation, R = 2 

        
(c) without strength degradation, R = 4        (d) with strength degradation, R = 4 

Figure 10 Displacement demands of building model A subject to uni-lateral and building model B subject 

to bi-directional excitations (San Fernando earthquake) 

Asymmetrical buildings that have been designed according to the seismic design codes 

normally have the structural elements well positioned to account for the potential 

response behavior. The structural elements are normally designed for earthquake actions 

applied at the notional center of mass of the building with an additional eccentricity 

(AS1170.4, 2007; ICC, 2006; EN1998-1, 2004). Consequently, asymmetrical buildings 

that have been designed in accordance with the seismic design procedures will have the 

center of strength located close to the center of mass of the building.    

To investigate the displacement response behaviour of code designed buildings, non-

linear time history analyses were performed on building model C (Fig. 11(b)) with the 

center of strength (CV) coinciding with the center of mass (CM). Frame elements in 

model C (Fig. 11(b)) were positioned identically as for model A (Fig. 11(a). However, 

the strength of the frames in model C were distributed such that the center of strength CV 

coincided with the center of mass CM. 

The maximum displacement demand behavior associated with building models A and C 

were investigated by correlating the maximum displacement demand values against the 

uncoupled natural periods of vibration of the buildings in Figure 12. The displacement 

behavior of the center of mass of the buildings is shown to be similar between models A 

and C.  However, the reduction in strength eccentricity is shown to generally reduce the 

torsional response of the building especially when the building has been excited well into 

inelastic range. The observed trend is expected as the displacement behaviour of a system 
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excited well into inelastic range is governed more by the tangential stiffness as opposed 

to the initial stiffness of the system. In view of the observed trends, model A is 

considered to be conservative in representing the torsional response behaivour of 

buildings. 

 

 

 

 

 
  (a)  Model A     (b) Model C  

Figure 11 Single storey building models 

   
(a) Model A (CV = CS), R = 2            (b) Model C (CV = CM), R = 2 

    
(c) Model A (CV = CS), R = 4           (d) Model A (CV = CM), R = 4        

Figure 12 Displacement demands of building model A and building model C with strength 

degradation (San Fernando earthquake)  

5. Concluding remarks 

A simple seismic assessment of buildings in regions of low to moderate seismicity has 

been developed based on the concept of the displacement-controlled behaviour. A 

generalised displacement response spectrum model in bi-linear form was presented to 

provide seismic response predictions assuming linear elastic behaviour. The model has 

been extended to account for inelastic behaviour and torsional actions. Parametric studies 

based on non-linear time-history-analysis revealed that the peak displacement demands of 

non-ductile structures can be conservatively estimated by the maximum point of the 

displacement response spectrum. Further studies on asymmetrical single-storey building 

models have shown that the peak displacement demands of asymmetrical buildings that 
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an amplification factor of 1.6 can be applied to estimate the peak displacement demands 

of (PDD = 1.6 RSDmax) of buildings with one-asymmetry.  

It has been demonstrated in this study that the maximum drift demand on a building can 

be estimated based on the properties of the ground shaking without the need to undertake 

time consuming modelling and computations. The maximum drift demand can be 

compared to the displacement capacity for a quick assessment of its potential seismic risk 

to collapse. 
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