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Abstract 
 

A combined stochastic and Green’s function approach was developed to simulate strong 
ground motions in Southwest Western Australia (SWWA) in a previous study. Although 
it was proven that adopting the source parameters derived from other regions yielded 
reasonable simulation of ground motions in SWWA as compared with a few available 
strong motion records, the effect of source parameter variations on simulated ground 
motions was not known. This paper performs a statistical study of the effects of random 
fluctuations of the seismic source parameters on simulated strong ground motions. The 
uncertain source parameters, i.e., stress drop ratio, rupture velocity and rise time, 
corresponding to the empirical source models are assumed to be the mean value and 
normally distributed with an assumed coefficient of variation. An ML6.0 and epicentral 
distance 100 km event is simulated using Rosenblueth’s point estimate method to 
estimate the mean and standard deviation of PGA, PGV and response spectrum. The 
accuracy of the Rosenblueth’s approach is proved by Monte Carlo simulations.  
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1. Introduction 
 

Because of the lack of strong ground motion records, the studies of seismic effects on 
structures in Southwest Western Australia (SWWA) are based primary on strong ground 
motion models and records elsewhere, especially those in Central East North America 
(CENA). Recently, Hao and Gaull (2004) compared the various CENA models and a few 
recorded ground motion time histories in SWWA and found that none of the CENA 
models gave very satisfactory predictions of the recorded motions in SWWA. Because 
the number of available records in SWWA is limited and it is not practical to use those 
records alone to develop a reliable ground motion model for SWWA, Hao and Gaull then 
modified the Atkinson and Boore model (1995) based on available ground motion 
records to derive a model for SWWA. The modified model was proven yielded better 
prediction of local recorded motions (Hao and Gaull 2004). However, since most 
recorded motions in SWWA are associated with minor earthquakes of magnitude less 
than ML4.5. The modified model may be biased towards ground motion characteristics 
of small earthquakes. To overcome this problem, a combination of Green’s function and 
stochastic method has been developed to generate strong ground motion time histories 
(Liang et al., 2006). In the latter method, ground motion time histories at various 
epicentral distances from small earthquakes are stochastically simulated. The simulated 
ground motion time histories, together with the recorded motions from small earthquakes, 
are used as input to simulate ground motions of large earthquakes with the empirical 
Green’s function method. By comparing with the only records available in SWWA from 
two relatively large earthquakes, i.e., an ML5.5 event and an ML6.2 event, it was 
demonstrated that the combined method gave reasonably good prediction of ground 
motions in SWWA from large earthquakes (Liang et al., 2006).  
 
Because study of earthquake source and path parameters in SWWA is limited, many of 
the CENA parameters are adopted in the latter study (Liang et al., 2006). The reliability 
of using these parameters was proven only with four strong ground motion records in 
two earthquake events. In reality, many uncertainties exist in the seismic source and path 
parameters. Variations of these parameters may greatly affect the simulated ground 
motions. This paper analyses the effects of variations of uncertain earthquake source 
parameters on the simulated ground motions using the empirical Green’s function 
approach. Statistical variations of the various source parameters are considered in the 
simulation and their effects on the simulated ground motions are examined. An ML6.0 
and epicentral distance 100 km event is simulated as an example. Each source parameter 
is assumed statistically varying with a normal distribution. The respective source 
parameter value from the empirical model is taken as the mean value with an assumed 
standard deviation in this study. Rosenblueth’s point estimate method (Rosenblueth, 
1981) is used for statistical calculations. The accuracy of the Rosenblueth’s point 
estimate method is verified by Monte Carlo simulations. The Monte Carlo simulation 
results are also used to derive the distribution types of the parameters of the simulated 
ground motion time histories.  



2. The Green’s Function Method and the Seismic Source Parameters  
 

The equation of empirical Green’s function method (Irikura et al., 1997) is given as 
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where ‘*’ means convolution, U(t) is the ground motion of large event; r is the distance 
between the hypocenter of small event and the receiver; rij is the distance between the 
subfault (i,j) and the receiver; r0 is the distance between the subfault (i,j) and the 
hypocenter of large event; F(t) is the slip-time filtering function; C is the stress drop ratio; 
Vs is the shear wave velocity; Vr is the rupture velocity; u(t) is the contribution of the jth 
sub event; �(t-tij) is the Dirac delta function; tij is the phase delay term. T is the rise time 
for large event. � is a small random time for each cell to remove periodicities caused by 
the cell size. n' is a properly selected integer to eliminate spurious periodicity. N is the 
scaling between large and small event, which is derived from the study of Kanamori and 
Anderson (1975). Irikura (1986) introduced the following Eq. (4) for different stress drop 
between small and large event. 
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In the above model, the earthquake source is characterized by a set of source parameters, 
i.e., stress drop, fault dimensions, rupture velocity and rise time. These parameters affect 
the simulated ground motions. Many authors have studied these parameters and various 
empirical relations for these source parameters have been proposed (Celler, 1976, Wells 
and Coppersmith, 1994, Dowrick and Rhoades, 2004). Many unknown and/or uncertain 
factors influence these parameters. In most previous studies, however, they are assumed 
as deterministic. The effects of their variations on earthquake ground motions are not 
properly studied yet.  
 
In this study, the source parameters, i.e., the stress drop ratio, rupture velocity or phase 
delay and rise time are assumed to vary randomly. The fault size is closely related to the 
seismic magnitude. It is assumed as deterministic in this study. As can be seen in Eq. (1) 
to Eq. (4), the stress drop ratio affects the N value which causes the change of 
superposition times. The rise time of large event determines the corner frequency of 
spectrum. Phase delay term has an effect on phase spectrum. It should be noted that the 
variations of the path parameters are not explicitly considered in this study. However 



they are implicitly included in stochastic simulations of ground motions because the 
simulations are carried out according to the target ground motion spectrum, which 
usually are the mean spectrum of the expected ground motions.  
 

3. Variations of the Seismic Source Parameters 
 
Earthquakes in SWWA are intraplate events and the stress drop does not seem to be 
constant in small magnitude event, which can be observed in the data of Burakin 
earthquake (Allen et al., 2006). However, for earthquakes of magnitude above 5, 
compared with the recorded data, Liang et al. (2006) found that the constant-stress 
scaling law seems suitable because simulated motions based on a constant stress drop 
assumption well fit with the recorded motions. To study the effect of stress drop variation 
on ground motions in this study, the constant stress-drop ratio is assumed with a normal 
distribution.  
 
Another parameter that significantly affects the ground motion is the phase delay which 
is also assumed to vary randomly. Rupture velocity is a main factor that affects phase 
delay. In this study, the mean rupture velocity is taken as 0.8 times of the shear wave 
velocity of 3.91 km/sec of the seismic source in SWWA (Dentith et al., 2000). The 
normal distribution is also assumed. 
 
The mean value of rise time was computed using Eq. (5) (Somerville et al.1993). It is 
also assumed to vary randomly. It should be noted that the stress-drop ratio, rupture 
velocity and rise time may be inter related. In this study, however, they are assumed to be 
statistically independent of each other owing to the lack of information on their cross 
correlation.  
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4. Ground Motion Simulation with Uncertain Seismic Source Parameters 
 

As an example, ground motion time history from an ML6.0 and epicentral distance 100 
km event is simulated from a small event of ML4.5 and the same epicentral distance. The 
mean value, coefficient of variation, and distribution type of the three random source 
parameters are defined in Table 1. Monte Carlo simulation and Rosenblueth’s point 
estimate method were applied in the simulation to calculate the mean value and standard 
deviation of the PGA, PGV and response spectrum of the simulated ground motion time 
histories. The Monte Carlo simulation results are also used to determine the distribution 
types of these parameters of the simulated time history.  
  
 
 
 



Table 1.Random variables and their distribution 
Parameters Mean C.O.V. % Distribution 

Stress drop ratio 1 10 normal 
Phase delay term (rupture velocity) 3.1 (km/sec) 10 normal 

rise time  0.39(sec) 10 normal 
 
4.1 Monte Carlo simulation  
Ground motion simulations are carried out with many randomly selected stress-drop 
ratio, phase delay and rise time. For each simulated time history, the PGA, PGV and 
response spectrum are determined. A probability density function or cumulative density 
function of PGA, PGV and response spectrum can then be determined from a large 
number of simulations. The mean value and standard deviation of PGA, PGV and 
response spectrum can then be determined.  
 
A convergence test is conducted to check the number of Monte Carlo simulations 
required to obtain converged simulation results. The simulated ground motion PGA, 
PGV and response spectrum values at 0.1sec, 1.0sec, 2.5sec and 5sec are used as the 
quantity for the before convergence test. It is found that the mean value and standard 
deviation of PGA, PGV and the response spectrum amplitudes remained virtually 
unchanged after 600 simulations as shown in Figure 1 and Figure 2.  Therefore, in the 
subsequent calculations 600 simulations are performed for each case. The 600 simulated 
data for PGA, PGV and response spectrum values at the selected periods all display a 
lognormal distribution. To verify these observations, a Kolmorogov–Smirnov 
goodness-of-fit test (K–S test) is carried out. The significance level alpha for the test is 
0.01 in this study.  
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Figure 1. Mean value, standard deviation of PGA and PGV 
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Figure 2. Mean value, standard deviation of response spectrum at 0.1sec, 1.0sec, 2.5sec 

and 5sec 



Figure 3 illustrates the density histograms of the PGA, PGV and response spectrum at 
0.1sec, 1.0sec, 2.5sec and 5sec, and the corresponding lognormal distribution function. 
As shown, lognormal distribution function fits the simulated data well. All parameters 
pass the K-S test with a 1% significance level, indicating a very good-fit. Table 2 gives 
the results of Monte Carlo simulation and K-S test. 
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Figure 3. Probability density for PGA, PGV and response spectrum at 0.1sec, 1.0sec, 
2.5sec and 5sec and the corresponding lognormal distribution function 

 
Table 2. Monte Carlo simulation and K-S test result for PGA, PGV and response 

spectrum  
 Mean Standard 

deviation 
The test 
statistic 

The critical 
value 

PGA (mm/s2) 203.481 26.00 0.0362 0.0661 
PGV(mm/s) 3.79 0.68 0.0392 0.0661 

RSP0.1sec(mm/s2) 414.99 59.64 0.0183 0.0661 
RSP1.0sec(mm/s2) 42.83 9.53 0.0542 0.0661 
RSP2.5sec(mm/s2) 4.09 0.81 0.0402 0.0661 
RSP5.0sec(mm/s2) 0.98 0.12 0.0657 0.0661 

 
4.2. Rosenblueth’s point estimate method 
Monte Carlo simulation is straightforward to use and can give reliable estimations of 
statistical parameters of the simulated ground motion time histories. However, it is 
extremely time consuming and needs a large number of simulations, e.g., 600 
simulations in this case, to get the converged estimations. The Rosenblueth’s point 
estimate method (Rosenblueth, 1981) allows a direct estimation of the mean response 
and standard deviation. Because it is computationally more efficient than the Monte 
Carlo simulation method, in this study, the Rosenblueth’s point estimate method is also 
used. Its reliability is verified by using the Monte Carlo simulation results.  
 
To use the Rosenblueth’s point estimate method, 8 simulations are needed for three 
random variables in this study. Use PGA as an example, PGA+++ is the PGA value of the 



ground motion simulated with mean value (µ) plus one standard deviation (s) of the three 
random source parameters, i.e, stress-drop ratio, rupture velocity and rise time. Similarly, 
PGA--- is the PGA value of the time history simulated using mean value minus one 
standard deviation of the three random source parameters. In this study, it is assumed that 
the three variables are independent of each other. Then the point-mass weights are given 
as: 
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Following the above point estimate method, the statistical parameters of PGA, PGV and 
response spectrum are derived and listed in Table 3. As shown, the Rosenblueth’s method 
yields reliable estimations of the ground motion statistics. The results also indicate that 
the source parameter uncertainty significantly influences the simulated ground motions, 
and the source parameter uncertainty level amplifies. With a 10% variation in source 
parameters, the variations of the simulated ground motion parameters are in general 
more than 10%. The variation in response spectrum could be around 20%. These 
observations imply the importance of reliably determining the source parameters when 
using Green’s function method to simulate ground motions.  

 
Table 3. Point estimation and Monte Carlo simulation results for PGA , PGV and 

response spectrum in 0.1sec, 1.0sec, 2.5sec and 5sec  
Point estimate method Monte Carlo simulation  
Mean C.O.V (%) Mean C.O.V (%) 

PGA (mm/s2) 209.95 13.8 203.48 12.8 
PGV (mm/s) 3.41 13.2 3.79 17.4 

RSP0.1sec(mm/s2) 401.35 11.3 414.99 14.4 
RSP1.0sec(mm/s2) 45.48 19.6 42.83 22.3 
RSP2.5sec(mm/s2) 4.43 16.9 4.09 19.8 
RSP5.0sec(mm/s2) 0.97 6.2 0.98 12.2 

 
5. Discussion and conclusion 
 

This paper studies the effects of uncertain source parameters on ground motions 
simulated using Green’s function method. Assuming the three earthquake source 
parameters, i.e., stress drop ratio, phase delay and rise time, have normal distribution and 
a 10% coefficient of variation, the statistics of PGA, PGV and response spectrum of the 
simulated ground motion are calculated by Monte Carlo simulation and Rosenblueth’s 



point estimate method. It has proven that the Rosenblueth’s point estimate method gives 
similar results as the Monte Carlo simulations. Numerical results also indicated that 
variations of the earthquake source parameters significantly affect the simulated ground 
motions. With 10% variations in source parameters, the variation of PGA, PGV and 
response spectrum of the simulated ground motion are all more than 10%, indicating the 
importance of reliably determining the earthquake source parameters in ground motion 
simulations. 
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