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ABSTRACT 
       
This paper assesses the performance of reduced plant models of large and flexible 
structures obtained from using two different model reduction methods in vibration 
analysis and active control.  The Dynamic model reduction method and the Guyan 
method are compared using experimental test results.  A tall building model with 20 
degrees of freedom was used as the plant, with a linear motor installed at the top storey 
for the purposes of active-damping.  Although the results of simulations would suggest 
that both models perform sufficiently well, experimental testing proved that only the 
Dynamic model performs adequately for this specific application of active control.  The 
problem associated with the Guyan method, and with most other model reduction 
methods, is that they assume that the system behaves strictly according to linear elastic 
theory.  The versatility of the Dynamic model reduction method is such that it provides 
the option of obtaining system parameters from experiment, not just from theory.  The 
experimental procedure ensures that the Dynamic model reduction method forms an 
accurate description of the real system dynamics.  The applicability of this method for 
obtaining low-order plant models in the active vibration control of flexible structures 
was demonstrated through physical testing of the structure, while it was subject to 
sinusoidal excitation.  The tests have shown that the Dynamic model reduction method 
can be used as an alternative approach for model reduction of structural systems for the 
purpose of active vibration control.    
 
1.  INTRODUCTION 
 
For the active vibration control of complicated mechanical or structural systems a 
reduced dynamic model with a very limited number of degrees of freedom and yet 
sufficient accuracy is often required.  One of the typical applications is the active 
vibration control of high rise and flexible building structures subject to earthquake 
excitations and wind loads that have mainly low frequency components.  In this case, 
the dynamic responses of the structural systems concerned contain mainly the 
contributions made by a few of their lowest modes of vibration.  Consequently, the 
vibrations can be effectively controlled based on a reduced-order plant model that 
contains only a few of the lowest modes of these structures (Seto et al, 1991).   
 
The use of a reduced plant model within the controller can minimise the computation 
time for determining the feed-back gains required by the actuators and therefore 
improve the overall performance of the combined plant-controller system (Matsumoto 
et al, 1998; Kajiwara et al, 1992).  Seto et al, 1991 and Matsumoto et al, 1998 pointed 
out the importance of having reduced plant models in terms of meaningful physical 
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parameters such as mass, damping, stiffness parameters and presented a few successful 
applications of the active vibration of flexible structures based on reduced physical low-
order plant models.  Ma and Hagiwara, 1991 developed the Mode-displacement method 
for obtaining the reduced model of a large structural system.  The resultant models often 
perform well in structural analysis.  Zhang, 1995 presented a dynamic model reduction 
method that produces reduced models of systems with a large number degrees of 
freedom for dynamic analysis. The reduced models are formulated from condensed 
mass, damping and stiffness coefficient matrices and retain a small number of the 
lowest modes of the original system.  Care needs to be taken in choosing the reference 
frequency for taking into account the dynamic effect of the high modes, and in choosing 
the master coordinates that are retained in the reduced models. 
 
This paper begins with a description of the two different model reduction techniques 
that were used in this investigation, and then presents their simulated performance.  The 
theoretical models are compared next, against an experiment-based plant model, and 
then the final test results of the real tall building model are presented.  The two different 
plant model reduction techniques are: the Guyan and the Dynamic model reduction 
method (DMRM).  From the results, it is clear that the DMRM is superior particularly 
when applied to the active vibration control of real (physical) large structures.  
 
2.  DESCRIPTION OF THREE DIFFERENT MODEL REDUCTION METHODS 
 
2.1   The Guyan Model Reduction Method 
 
The Guyan model reduction method is the most common procedure for reducing the 
size of mass and stiffness matrices that form the reduced model of a plant.  While the 
reduced stiffness matrix preserves its accuracy, the reduced mass matrix produced by 
this method does not.  The reason for this inaccuracy is that the Guyan method uses a 
static transformation between the eliminated and retained coordinates for obtaining the 
reduced mass matrix.  This static transformation ignores the dynamic effect of the 
applied loads and creates an increasing error as the frequency of excitation is increased.  
For this reason, the Guyan model reduction method is only accurate in the low 
frequency range, and this has been previously demonstrated by simulation.       
 
2.2 The Dynamic Model Reduction Method (DMRM) 
 
In order for the DMRM (Zhang, 1995) condensed models to best approximate the 
original one, the condensed model retains n  number of natural frequencies and the 
corresponding modes at the chosen master coordinates of interest from the original 
model.  For the same unique harmonic forces applied at the master coordinates, the 
response matrix X

c

c determined from the condensed model must also be the same as that 
determined from the original model.  To achieve the first requirement, the system 
matrix  is determined as  M Kc

−1
c

−1,B M Kc c c= =−1 ΦΛΦ         (1) 
where Λ is the eigenvalue matrix and Φ is the corresponding modal matrix from the 
full-size model, (all damping is ignored here for simplicity).  To meet the second 
requirement, the response matrix Xc must be determined from the original structural 

Page 23-2



system which has a large number of degrees of freedom, or alternatively from vibration 
testing.   The mass matrix of the reduced model can then be determined as, 
M X I M Kc c c c= − +− −1 2 1( ω −1)

c

       (2) 
Consequently, the stiffness matrix is determined as,  
K M Bc c= .           (3) 
After the condensed model is obtained, the responses at the master coordinates due to 
the applied forces can then be computed, and hence the dynamic responses at those 
eliminated coordinates can also be obtained in terms of the computed responses at the 
master coordinates. 
 
As damping always exists in actual structural systems and is difficult to be modelled 
accurately, modal damping is therefore used for the reduced models. The level of the 
modal damping is determined by experience or by experimental modal testing on the 
systems. 
 
Unlike the Guyan method, the DMRM includes the dynamic effect of the applied loads 
when formulating the reduced mass matrix, and has therefore much greater accuracy at 
the high frequency range of excitation.  Both the Guyan and DMRM use real 
coordinates, and this is their greatest advantage over the Mode-displacement method, 
particularly for closed-loop control applications (Boffa et al, 2005). 
 
3.  EARTHQUAKE EXCITATION SIMULATION, CLOSED-LOOP RESPONSE 
 
Although the linear quadratic regulator is a more common control method for this 
application, the pole placement control technique was used here because of its 
simplicity.  The pole placement control was configured so that parameters such as the 
desired closed-loop damping ratios (active-damping ratios) and the desired closed-loop 
natural frequency of the active mass could be adjusted.  By increasing these parameters, 
more control force is produced. This same pole-placement technique was also used in 
the final active-control testing of the real building model. 
 
For all simulations reported below, the recorded El Centro earthquake data was used. 
The original data had many dominant low frequency components and was sampled at 
50Hz.  The original sampling frequency was scaled up by a factor of 8 ( i.e., 400Hz 
sampling frequency) in order to shift the dominant frequency components to a higher 
range.  In doing so, the higher modes of the reduced plant models were also excited 
under the modified earthquake input. The 400Hz sampled earthquake input has major 
dominant frequencies between 9 and 17Hz, with some minor dominant frequencies 
occurring between 17 to 47Hz.  At this sampling frequency, the total frequency content 
of the earthquake ranges from zero to approximately 130Hz.  
 
The accelerations of the top storey of the building were plotted in Figures 1b to 1d.  The 
Mode-displacement 7dof model was used here as the plant model, because an 
independent plant was required to assess the closed-loop performance of the Guyan and 
DMRM observer models. Both of these models were derived from the basic linear-
elastic Finite Element Method (FEM), and therefore they perform very well when 
compared against the Mode-displacement plant model, because it is also based on FEM 
theory.  For a more comprehensive set of simulation results, refer to Boffa et al, 2005. 
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Fig.1a: (Upper-Left): Earthquake ground acceleration simulation, using a data sample frequency of 400Hz. 
Fig.1b: (Upper-Right): Open-loop simulated plant response of 7dof theoretical Mode-displacement model 
Fig.1c: (Lower-Left): Closed -loop simulation, 4dof DMRM theoretical observer, using theoretical plant. 
Fig.1d: (Lower-Right): Closed -loop simulation, 4dof Guyan theoretical observer, using theoretical plant. 
   Fig.2: 

Structural  Model   
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Fig.3a: Upper -Left 
Fig.3b:Upper-Right 

 Earthquake ground acceleration simulation, using a data sample frequency of 400Hz. 
 Open-loop simulated plant response of 3dof DMRM (using real plant 5Hz test model). 

Fig.3c:Lower-Left 
Fig.3d:Lower-Right  Closed -loop simulation, of 4dof Guyan theoretical observer, using real plant model. 

 Closed -loop simulation, of 4dof DMRM theoretical observer, using real plant model.  
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In Figure 3b (above), the Mode-displacement plant is replaced with a 5Hz DMRM real 
plant model, which is based on the experimental procedure outlined under section 2.2.   
It is only when the theoretical observer models (in Figure 3c and 3d) are compared 
against a real plant model such as this, that we notice the active control become 
obviously unstable. The same situation occurs for any chosen DSF (not just 400Hz).  
The reason for this instability is twofold:  Firstly the natural frequencies and modal 
shapes of all of the theoretical models deviate considerably from the real (physical) 
building model, and secondly, their forced response characteristics also deviate 
significantly from the real model.  These discrepancies have occurred because the 
theoretical models are based on the linear elastic spring theory, which is not always 
closely followed in reality.     
 
To solve this problem of instability, the Guyan model is replaced with a static DMRM 
model (in Figure 4d), which was derived from a specific experimental procedure. The 
displacements were measured at all master coordinates of the building while a range of 
static loads were applied separately to each master co-ordinate at a time.  Linear graphs 
were obtained, the slopes of which describe the displacement per unit force elements of 
the static response matrix Xc, (that was mentioned above under section 2.2).  In addition 
to this, the theory-based DMRM model was replaced by a 5Hz DMRM (in Figure 4c), 
which was also derived from experiment.  Instead of a static load, this time a sinusoidal 
load at a frequency of 5Hz was applied to each master coordinate of the building. All 
displacements were measured again, and this produced a dynamic response matrix Xc, 
describing an alternative reduced model.   
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Fig.4a:(Upper-Left): Earthquake ground acceleration simulation using a data sample frequency of 400Hz. 
Fig.4b:(Upper-Right): Open-loop simulated plant response of 3dof DMRM (using real plant 5Hz model) 
Fig.4c:(Lower-Left): Closed-loop simulation, 4dof 5Hz DMRM real observer, using real plant model. 
Fig.4d:(Lower-Right): Closed-loop simulation, 4dof Static DMRM real observer, using real plant model. 
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The test frequencies of zero and 5Hz were both chosen specifically, because they fall 
well below the third natural frequency of the structure, and are close to, but lower than 
the dominant frequency of excitation. The third natural frequency is significant here, 
because it is the highest mode of vibration that we are trying to control.  As can be seen 
in Figure 4, both experiment based DMRM models perform well as observers, when 
compared against a real (physical) plant model.   
 
4.  SINUSOIDAL ACTIVE-CONTROL TESTING OF PHYSICAL STRUCTURE 
 
The following graphs prove that the Static DMRM and the 5Hz DMRM reduced models 
both effectively mitigate oscillations during active vibration testing on a real 2.5m high, 
20 storey model structure.  Both graphs compare the active-damping mode against the 
passive-damping mode of the system when a sinusoidal force is applied to 18th floor.  At 
a frequency of excitation of 12.1Hz, the 5Hz model performs in a very similar manner 
to the static model.  But when excited at 24.2Hz, the 5Hz model performs much better 
than the static one, because it describes the higher vibration modes more accurately.  
The opposite was also proven by experiment, that at much lower frequencies of 
excitation, the static DMRM performs better than the 5Hz model, for similar reasons.  
The pole-placement control technique was used here throughout. 
 

Top Floor Response of Structure with  5Hz DMRM 
Observer, and 12.1Hz Sinusoidal Excitation.
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Figure 5a:     12.1Hz  Sinusoidal  Experimental  
                      Test Results of  5Hz DMRM observer 

Figure 5b:     12.1Hz  Sinusoidal  Experimental  
                      Test Results of  Static DMRM observer 
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                      Test Results of  5Hz DMRM observer                           Test Results of  Static DMRM observer 

 
 
 

Page 23-6



5.  CONCLUDING REMARKS 
 
The applicability of the Dynamic model reduction method to the active vibration control 
of large structural systems has been demonstrated from the presented test results. The 
versatility of the Dynamic model reduction method is such that it provides the option of 
obtaining system parameters from experiment, not just from theory.  The problem with 
theory based model reduction techniques is that they rely on the linear elastic 
assumption.  This assumption resulted in a drastic deviation in performance from the 
real structural model, as determined from physical testing on it, and produced unstable 
observers for active control.  The experimental procedure outlined in this paper ensures 
that the Dynamic model reduction method forms an accurate description of the real 
system dynamics, and can be performed at any convenient frequency including zero.  
Care needs to be taken when choosing this test frequency, as it should be as close as 
possible to, but lower than, the predicted dominant frequency of the excitation force.   
Further attempts at improving the active-damping effect of the real structural system are 
currently being attempted; they are being directed towards better control algorithms.  
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