
Australian Earthquake Engineering Society 2012 Conference, Dec 7-9, Queensland

Keynote Lecture

Size Distribution of Seismic Events in Mines

Aleksander J. Mendecki
Institute of Mine Seismology, Australia

E-mail: Aleksander.Mendecki@IMSeismology.org

Abstract

As for earthquakes, the sizes of seismic events induced by mining are, within
a certain range, power law distributed: N (≥ R) = αR−β , where N (≥ R) is the
number of events not smaller than R, as measured by seismic potency P , moment
M or radiated energy E, α measures the activity rate and β is the exponent, or
the β-value.

We analysed different data sets of seismicity related to underground hard rock
mining with differing geological structures, mining layout, extraction ratio, depth
and rate of mining. The exponent β correlates positively with the stiffness of the
system (the ability to resist seismic deformation with increasing stresses), i.e. the
stiffer the system the higher the exponent. As mining progresses and the overall
stiffness of the rock mass degrades the parameter α tends to increase and β tends
to decrease. At high mining rates we observed a negative correlation between β
and the fractal dimension of the hypocentres. The uncertainty or unpredictability
of R, as measured by Shannon entropy, increased with decreasing β.

For the three data sets analysed in this paper none of the traditional size
distribution parameters, namely: α, β or Pmax1 = α1/β , managed to rate seismic
hazard consistently and reliably. However, all parameters incorporating volume
mined, Vm, rated hazard appropriately. Since the rate of rock extraction that
drives the seismic rock mass response to mining varies, the most conclusive
parameters to quantify seismic hazard are those incorporating volume mined.

In almost all cases the data deviates from the classical power law. At the lower
end of the size spectrum the observed deviations are mainly due to contamination
of data with blasts or due to bad seismological processing, otherwise there is a
remarkable fit down to the lowest observable event. At the high end of the scale
deviations are rather the rule than the exception, and they are most frequently
convex, but in some cases concave. This has serious implications for seismic
hazard assessment. Therefore, we show a relation, based on the upper-truncated
power law distribution, to estimate the size of the next record breaking event.
This relation is a function of β, which in turn is a function of the volume of rock
extracted or to be extracted.
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1 Introduction

In a hard rock mass with random heterogeneities and with some regular geological
structures under load there are patches of rock resisting deformation where stresses
are increasing, patches of diffusion where stresses are decreasing and there are some
passive volumes not influenced by loading. Locally, stress build-up and/or strength
degradation may lead to fast relaxation via deformation jumps, or seismic events,
that radiate and dissipate energy across the system. Over time, the size distribution
of these events will, within a certain range, follow the power law

N (≥ R) = αR−β, (1)

where N (≥ R) is the number of events not smaller than R as measured by seismic
potency – the product of an average source displacement and rupture area, P = ūA,
seismic moment – the product of rigidity and potency M = µP or by the radiated
energy E. Parameter α measures the level of seismic activity and β is the exponent.
The power law (1) is an example of a fat or heavy tail distribution that for large R
falls off more slowly than an exponential and much more slowly than a Gaussian
(thin tail), see Figure 1.
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Figure 1: Bodies (left) and tails (right) of Gaussian (mean = 10−1.9 and sd = 0.365),
exponential (mean and sd = 0.365), and power law potency distributions with β =
0.74, logPmin=−1.9, average logP of the sample = 0.365. Parameters are based on
data set B, see text.

The probability of a jump in a system described by the Gaussian distribution of
sizes is Pr (jump)∼ exp

(
− (jump)2 /

(
2s2d
))

, where sd is the standard deviation and by
the exponential distribution is Pr (jump) ∼ exp (− |jump| /sd). The six-sigma event,
i.e. 6sd from the mean, has the probability of 10−9 of occurring in the case of a
Gaussian distribution, whereas it has a 10−3 chance in the exponential case – 106

times more likely than in the Gaussian case. The power law gives an even higher
likelihood of a six-sigma event occurring.

The power law also has the property of scale invariance, i.e the relative change
of N (≥ kR)/N (≥ R) = k−β is independent of R, therefore it lacks characteristic scale
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and puts no prior limit on the maximum event size. Such a scaling can only exist
within certain range of sizes, then either the exponent of the distribution or the
nature of the distribution need to change to secure a finite energy release. Remarkably,
the distribution of sizes of earthquakes for Southern California is observed to be a
power law with a constant exponent over more than six orders of magnitude (e.g.
Christensen et al., 2002). This scaling is the property of regional dynamics rather
than individual faults where it is more complex (e.g. Wesnousky et al., 1983; Main
and Burton, 1984; Kijko and Stankiewicz, 1987; Wesnousky, 1994; Wiemer and Wyss,
2002). However, some deviations from the power law may lie within the 95% confidence
limits of the Poisson process and therefore may not be significant enough to be regarded
“characteristic” or “bi-modal” (Jackson and Kagan, 2006; Kagan et al., 2012).

In mines the power law scaling has been observed for seismic events as large as
m=5.0 (Mendecki et al., 1988) and recently for small fractures with m=−4.0 to −0.3
(Kwiatek et al., 2010), although with varying exponents – seismic events in the low
magnitude domain are characterised by higher β.

There is a great deal of speculation on possible mechanism(s) that generate the
power law relation. A plausible interpretation is that the crust, or a given seismogenic
region, operates in a self organised critical regime or, more precisely, is a part of
“slowly driven, interaction dominated threshold systems” (Jensen, 1998). In this
model (1) the dynamics is dominated by the mutual interaction between different
degrees of freedom, (2) the thresholds allow a large number of static metastable
configurations and (3) slow loading is important since the strong drive will not allow
the system to relax from one metastable configuration to another.

In active mines the extraction of rock is intermittent, and so is the seismic rock
mass response to mining. Overall loading is fast and highly variable compared to
the tectonic regime. The dynamics here is driven mainly by two competing internal
processes, both magnified by the presence of, and occurring mainly close to, excavations
and around geological structures.

(1) An excitation due to a sudden loading that moves the system away from its
current state and creates an excess level of stress at different locations. It is driven
mainly by the transient convergence of excavations in response to rock extraction.

(2) A relaxation, that cascades the system down from its excited non-equilibrium
state. It is facilitated by different forms of inelastic deformation – seismic and aseismic.
It modifies the stress pattern by reducing its elevated levels and moving it further
away from excavations.

Figure 2 shows energy index, EI – a proxy for stress (van Aswegen and Butler,
1993) and cumulative seismic displacement, Σu, where u = 0.00225 3

√
P (Somerville

et al., 1999), plots for a non-productive Sunday and a productive Wednesday. The EI
of an event is the ratio of its radiated seismic energy E, to the average energy Ē(P )
radiated by events of the same seismic potency P taken from an orthogonal regression
line, log Ē = d logP + c, fitted to data recorded in the area of interest, EI = E/Ē (P ).
For d = 1.0, which is not always the case, the energy index is proportional to apparent
stress, EI = 10−cE/P = 10−cσA. The higher the energy index, or the apparent stress
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for similar potency events, the higher the stress at the source of the event at the time
of its occurrence ( Mendecki, 1993 Figure 1.1; Mendecki, 1997, page 189). There is
very little activity on Sunday, EI and Σu are both flat. On Wednesday, however, the
excitation phase can clearly be seen starting immediately after blasting. The small
event of m=0.8 induced, or triggered, by production blasts most likely prolonged the
excitation phase.

12:00:00 18:00:00 00:00:00 06:00:00 12:00:00
-0.5

-0.4

-0.3

-0.2

-0.1

0

lo
g

E
I

-0.10

0.00

0.10

0.20

C
u

m
u

la
ti

v
e 

D
is

p
la

ce
m

en
t

↓
Blast time

Sunday, 10 April 2011

12:00:00 18:00:00 00:00:00 06:00:00 12:00:00
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

lo
g

E
I

0.15

0.20

0.25

0.30

C
u

m
u

la
ti

v
e 

D
is

p
la

ce
m

en
t

↓
Blast time

Wednesday, 13 April 2011

m0.8

Figure 2: Energy index shown in red and cumulative seismic displacement u =
0.00225P 1/3 [m], in blue, on time plots during Sunday with no production blasting
(left) and during Wednesday with excitation phases associated with sudden loading
after production blasts (right).

2 Size Distribution Characteristics

Inter-event volume mined. One of the important parameters derived from the
size distribution statistics is the mean recurrence time t̄ of seismic events above
certain size, say seismic potency, t̄ (≥ P ) = ∆t/N (≥ P ), where N (≥ P ) is the number
of events above the size P selected from the volume of rock ∆V over the time period
∆t. The use of recurrence time is appropriate when driving forces are relatively
constant. Since in mines loading is highly variable it is more useful to quote an
average inter-event volume mined to generate a seismic event not smaller that a
certain size, V̄m (≥ P ) = Vm/N (≥ P ) (Mendecki and Lötter, 2011). TheN (≥ P ) is most
frequently described by the open-ended relation (OE), see Equation (1) or from the
upper-truncated power law (UT) (Page, 1968; Cornell and Vanmarcke, 1969; Cosentino
et al., 1977).
Open-ended power law. Taking the logarithm of Equation (1) and replacing R with
P gives logN (≥ P ) = logα − βlogP , which is the familiar Gutenberg-Richter form
logN (≥ m) = a − bm, where a = logα, b = β and magnitude m = logP . The OE
relation allows infinite potency, but the one largest event – referred to here as the
Pmax1, is derived from αP−βmax1 = 1, that gives Pmax1 = α1/β or logPmax1 = (logα)/β.
Note that the probability of having an event with potency greater than or equal to
Pmax1 is finite, Pr (≥ Pmax1) = P βmin/α, where Pmin is the lowest threshold potency
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selected to fit the power law. The probability of having an event with potency not
smaller than P is Pr (≥ P ) = N (≥ P )/N (≥ Pmin) = P βminP

−β. The number of events
within the potency range of (P1, P2) is N (P1, P2) = α

(
P−β1 − P−β2

)
and the probability

of having a seismic event within the potency range (P1, P2) is given by Pr (P1, P2) =

P βmin

(
P−β1 − P−β2

)
. The probability density function for the OE relation is f (P ) =

βP βminP
−β−1 and the mean value of the distribution 〈P 〉 = Pminβ/(β − 1) is finite for

β > 1. The potency release by seismic events within the potency range P1 and P2 is
P (P1, P2) = N (P1, P2)

´ P2

P1
Pf(P )dP/

´ P2

P1
f(P )dP . For β < 1, one can integrate from P1

= 0 to a finite potency P (0, P2) = αβP 1−β
2 /(1− β). For β = 1 one can integrate within

the finite potency range, P (P1, P2) = α ln (P2/P1) and for β > 1 it can be integrated
from a finite potency to infinity, P (P1,∞) = −αβP 1−β

1 /(1− β). For β < 1 the following
ratio quantifies the portion of missing potency below Pmin.

P (0, Pmin)

P (Pmin, Pmax)
=

P 1−β
min

P 1−β
max − P 1−β

min

. (2)
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Figure 3: Missing potency ratio.

In general, the ratio (2) increases with
an increase in the β-value and with a
decrease in the Pmax. Theoretically that
portion can be as low as a fraction of
a percent for a large Pmax and for a
relatively low β-value or, it may exceed
100% in the opposite case, see Figure 3.
Upper-truncated power law. The UT
relation is a version of OE with a hard
upper limit on potency, Pmax, such that
Pr (> Pmax) = 0. The number of events
with potency not smaller than P is

N(≥ P ) = α
(
P−β − P−βmax

)
. (3)

The probability Pr (≥ P ) =
(
P−β − P−βmax

)
/
(
P−βmin − P−βmax

)
and of having an event

within a potency range (P1, P2) is given by Pr (P1, P2) =
(
P−β1 − P−β2

)
/
(
P−βmin − P−βmax

)
.

The probability density function is f(P ) = βP−β−1/
(
P−βmin − P−βmax

)
and the mean

value of the distribution is 〈P 〉 = [β/ (1− β)]
(
P 1−β
max − P

1−β
min

)
/
(
P−βmin − P−βmax

)
. The

variance is defined as V ar (P ) =
〈
P 2
〉
− (〈P 〉)2 and the skewness is γ (P ) =[〈

P 3
〉
− 3 〈P 〉V ar (P )− (〈P 〉)3

]
/[V ar (P )]3/2, where 〈Pn〉= [β/ (n− β)]

(
Pn−βmax − P

n−β
min

)
/(

P−βmin − P−βmax
)
, for n=2, 3. The equations for potency production are similar to the OE

distribution, with the exception that P2 can only go to Pmax.
Information Entropy and β. Following Shannon’s second paper, the continuous,
as opposed to the discrete, information entropy of the probability density function
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of potency P can be written as H [f (P )] =
´∞
0 f (P )log[1/f (P )]dP , where f (P ) is the

probability density function. The continuous entropy is not a limit of the discrete
entropy when the bin size goes to zero. The entropies of continuous distributions
have most, but not all, of the properties of the discrete case. There is one important
difference between the continuous and discrete entropies. In the discrete case the
entropy measures the randomness of the variable in an absolute way. The continuous
formulation measures it relative to the coordinate system and the entropy can be
negative. It is not important, though, if one is interested in the differences or in
the rate of change between two or more entropies, since they are independent of the
frame of reference (Shannon, 1948).

The log (1/f (P )) is the information content of event P with probability f (P ) and,
if f (P ) is high then knowledge that event P occurred gives very little information,
since it had a high probability of occurrence to start with. The information entropy is
therefore an average information weighted by the probability of each event. Events
with either very high or very low probabilities do not contribute significantly to the
information entropy. H reaches its maximum value if all states are equally probable
and it decreases as the uniformity of the probability distribution is being eroded.
Therefore H measures the amount of uncertainty in a given distribution, which is a
measure of randomness and unpredictability. For the UT distribution

H = 2.3β (1 + β)A−B
[
2.3β log

(
−β (PminPmax)β /B

)
− β − 1

]
/ (2.3βB) , (4)

where A =
(
P βmin logPmax − P βmax logPmin

)
, B = P βmin−P βmax and 2.3 = ln (10). For the

OE distribution H = log (Pmin/β) + 0.434(1/β + 1).
From both equations it follows that uncertainty, or unpredictability, increases

with decreasing β, more so in case of the OE see Figure 4. Tests on three data sets
described below show that the most predictable values of P are within the data set
B, followed by A and then C.
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Figure 4: Information entropy H for UT (left) and OE (right) distributions as a
function of β for the three data sets: A (red), B (blue) and C (green). The bottom
three lines are for Pmin as in the data (note the negative range for H) and the top
three lines (left) and one collapsed top line (right) are for Pmin = 1.
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3 Rock Mass Heterogeneity, Stress, Stiffness and β.

For a data set that obeys the power law size distribution the exponent β is a statistical
measure of the ratio of small to large events, and it decreases as the portion of the
intermediate and large events increases. This power law is well observed for small
and intermediate magnitude range events that occur within a given seismogenic
volume over longer period of time.

In some cases, however, data points on the cumulative frequency plot indicate a
double slope convex or concave character. One possible explanation of such deviations
is the change in the sensitivity of the monitoring system during acquisition of data.
Another possibility is that the data is generated by two spatially separated processes
with different size distributions. The concavity, see Figure 5, may be generated by a
combination of high activity of low magnitude events induced by mining excavation(s)
with a few larger events caused by an existing geological structure. This behaviour
is frequently a function of the spatial and/or temporal data selection.
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Figure 5: An example of a concave power
law data set recorded at WH2# during one
year period in the cumulative (dots) and
non-cumulative forms (vertical bars).

The more frequently observed convexity,
see Figure 9, is caused by a deficit of
larger events and may indicate that the
size distribution hazard is contained.

In general, the exponent β is found to
be influenced by the degree of rock mass
heterogeneity, the average level of stress
and the stiffness of the system.

The rock mass heterogeneity depends
on the spatial distribution of sizes
and distances between strong and/or
stressed and weak and/or destressed
patches of rock where seismic sources
may nucleate and be stopped. An
increase in rock heterogeneity results in
a higher β, since it is more likely that the
initiated rupture be stopped by a soft or
hard patch before growing into a larger
event (Mogi, 1962; Mori and Abercombie, 1997). Scholz (1968) stated that the β-value
varies inversely with stress. The reasoning that β tends to be lower in high stress
areas is based on a similar argument to heterogeneity, namely, that rupture once
initiated grows larger in a high stress regime. In his paper Scholz, 1968 also argues
that Mogi, ’s experiments were done in the low frequency range and therefore the
conclusions are open to question. Later Kiyoo Mogi repeated his measurements in
high frequencies and with exceptionally high dynamic range and reconfirmed his
initial results (Mogi, 1980; Mogi, 1981). He also conducted tests under constant
compressive stress and observed a gradual decrease in β until the main rupture (see
also Mogi, 2007, pages 250 - 261).
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Frohlich and Davis (1993), Schorlemmer et al. (2005) and Gulia and Wiemer
(2010) show that the areas characterised by reverse faulting have lower β-values
than the zones with strike-slip, and that the highest values of β were associated with
normal faulting. Given that thrust faults tend to be under higher stress than normal
faults they argue that β depends inversely on differential stress.

Experimental study on rock samples of equal degrees of heterogeneity in triaxial
conditions has shown a decrease in β of acoustic emission events with both the
differential stress and the confining pressure, during all stages of stress-strain regime,
including the post peak strain softening (e.g. Amitrano, 2003).

Stiffness measures the rigidity of a system, i.e. its ability to resist deformation in
response to an applied load. It scales positively with the ratio of the applied stress
(or force) to the induced strain (or displacement). Mendecki and van Aswegen, 1998
and van Aswegen and Mendecki, 1999 observed a higher β in stiffer systems. These
observations do not contradict reports on decreasing β with increasing stress during
the strain hardening regime, since there is a general loss of stiffness with increasing
stress. However, in a strain softening regime, where the strength is decreasing with
increasing strain, stress is lower but we observed lower β.

Figure 6: (Left) Time plot of log (EI) in red and cumulative VA in blue, during WH6
shaft pillar extraction. Arrows on top indicate the occurrence of large events and
Ks is the stiffness modulus. (Right) Cumulative magnitude-frequency plot for the
hardening and softening regimes.

Figure 6 shows the time evolution of energy index EI (a proxy for stress) and
the cumulative apparent volume, VA = M/σA, (a proxy for deformation) during shaft
pillar extraction at the Western Holding gold mine. Mining was at a depth of 1400 m
progressing from the centre of the pillar to the outer perimeter. Due to the similarity
of this layout to the triaxial lab rock failure test one would expect a hardening phase
– nonlinear stress increase to its peak, followed by a softening of the pillar and an
increased rate of deformation. Other parameters depicted in Figure 6 are: seismic
stiffness Ks = σs/εs, the ratio of seismic stress σs and seismic strain (Kostrov and
Das, 1988), the b-value in the Gutenberg-Richter relation and d which is the slope
of the logE = d logP + c relation. Note that almost all events larger than logE=7.5
occurred after the all time peak in EI.
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4 Mining Factors and Seismic Hazard

Hazard factors. Seismic hazard in mines is positively correlated with the following
natural factors: virgin rock stresses, which is a combination of depth and tectonic
stress, mechanical strength of the rock, the degree of homogeneity, or smoothness,
of the rock mass that includes the presence and the nature of geological features –
specifically those with shear strength comparable to the shear stresses induced by
mining excavations.

In addition there is a number of mining related factors that may exacerbate the
intensity of the seismic rock mass response to mining, among them: the extraction
ratio, the extent of the mined-out area, the rate and the spatial and temporal sequence
of extraction, additional stress induced by the adjacent mining, and the smoothness
of the mine layout itself and in relation to the geological structures. Smoothness here
is defined by the dimensionality of the object, as measured by its fractal dimension –
the lower the fractal dimension the smoother the object.

Figure 7: Mine layouts in plan (top) and in section (bottom) associated with data set A
with fractal dimension Dml = 1.67 (left), B with fractal dimension Dml = 1.68 (center)
and C with fractal dimension D = 1.71 (right).

The objective of this section is to show the complex relation between the natural
factors, mining factors and related seismic hazard for the three data sets. It also
demonstrates the difficulties in utilising the size distribution parameters in rating
seismic hazard.
Data sets. Data sets A, B and C were collected over the same two year period (∆t
= 678 days), all related to tabular mining with principal vertical stresses but with
different geological structures, mining layouts, extraction ratios, depths and different
rates of mining. The data set A is associated with long-wall mining of highly extracted
tabular reef and data set B is related to sequential grid mining, see Vieira et al., 2001
for a review of these mining methods. In both cases, A and B, the rock extraction took
place at practically the same depth of 3300 m. Data set C is related to the scattered

Australian Earthquake Engineering Society 2012 Conference, Queensland



Mendecki: Size Distribution of Seismic Events in Mines 10

mining imposed by the presence of larger geological structures at an average depth of
1755 m, see Figure 7. A simple numerical elastic model shows that due to the higher
extraction ratio the mean vertical stress calculated over the un-mined areas in mine
A is 1.7 times higher than in mine B.
Hazard rating. The depth of mining, the volume mined, the rate of mining and the
approximate extraction ratio are listed in Table 1. The relative hazard rating from
(1) – the highest to (3) – the lowest, imposed by the author for each parameter are
also quoted, where applicable.

Table 1: Mining factors with hazard rating in parentheses.
Parameter Data Set A Data Set B Data Set C

Weighted depth of extraction, m 3294 (1) 3287 (2) 1755 (3)
Volume mined, Vm, m3 93190 (3) 418271 (1) 292677 (2)
Rate of mining, m3/day 137 (3) 617 (1) 432 (2)
Approximate extraction ratio, % 80 (1) 70 (2) 60 (3)

Because the rate of rock extraction that drives the seismic response in mines
varies, the most conclusive parameters are those incorporating Vm, see Table 2. The
highest production, the production rate and the highest seismic potency release is
associated with data set B. However, the highest observed potency release per unit
of volume mined,

∑
P/Vm, is associated with data set A. Compared to A and B the

seismic potency release for data set C is low. Note, that the production in B is 4.5
times higher than in A, however, the potency release per day is only 1.6 time higher,
and the potency release per unit of volume mined 2.8 times lower. Clearly the most
informative parameter of the inherent hazard is

∑
P/Vm, and if it is unacceptably

high then the slower pace of mining only delays the inevitable.

Table 2: Observed hazard related parameters, with hazard rating in parentheses.
Parameter Data Set A Data Set B Data Set C
Two largest observed events 3.4; 3.0 (1) 2.7; 2.6 (2) 2.6; 2.5 (3)
Nobs(≥logP=2) 31 (1) 29 (2) 15 (3)
Nobs(≥logP=1.5) 84 (2) 149 (1) 46 (3)
Vm/ Nobs(≥logP=2), m3 3006 (1) 14423 (2) 19512 (3)
Vm/Nobs(≥logP=1.5), m3 1109 (1) 2807 (2) 6363 (3)∑
P/day, [m3/day] 28.53 (2) 44.91 (1) 12.58 (3)∑
P/Vm 0.209 (1) 0.074 (2) 0.03 (3)

The cumulative graphs of the volume mined vs time, the potency release vs time
and the potency release vs volume mined are shown in Figure 8 left, centre and right
respectively. The potency release vs volume mined is self-explanatory and rates the
absolute seismic hazard for the three data sets clearly: the highest is A (1), the second
highest is B (2) and the lowest of the three is C (3). The largest observed events to
date rated hazard in the same sequence, but they’re not forward looking parameters,
hence of limited utility.
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Figure 8: All cumulative: volume mined versus time (left), potency release versus
time (centre) and potency release versus volume mined (right).

Layout, sequence of mining and hazard. To gain insight into the influence of
the mine layout on seismic hazard we estimated their respective fractal dimensions.
Fractals appear similar at any scale of observation. In mathematical terms, fractal
objects exhibit fractional dimensionality, that is, they are neither lines, nor surfaces
or volumes. Their dimension falls in between the classical dimensions of Euclidean
geometry. An object is fractal when its length L is a function of the length λ of the
measuring device, L ∼ λ1−D, where D is the fractal dimension (Mandelbrot, 1967,
1975). If N (λ) is the number of cubes of size λ needed to cover the object then the box
counting fractal dimension of an object can be estimated by D = lnN (λ)/ln (1/λ)
(Barnsley, 1988). Fractal dimension increases with the degree of irregularity, or
raggedness of the object. The lowest fractal dimension of mine layout, Dml = 1.67
is associated with long-wall mining, followed by sequential grid, Dml = 1.68, and the
roughest is the scattered mining imposed by the presence of geological structuresDml

= 1.81. This sequence could easily be inferred just by looking at the smoothness of
lines in Figure 7.

Table 3: Mining factors, with hazard rating in parentheses.
Parameter Data Set A Data Set B Data Set C

Dml of mine layout 1.67 (1) 1.68 (2) 1.71 (3)
Dsxy of epicenters 1.60 (2) 1.49 (1) 1.61 (3)
Dste of space-time extraction 1.84 (1) 1.92 (2) 2.20 (3)
Dsxyt of epicenters and time 1.84 (3) 1.71 (1) 1.83 (2)

Having coordinates and the dates and times of panel extraction we connected
lines between consecutively extracted panels and calculated the fractal dimension of
such a spatial and temporal graph, Dste. The smoothest sequence of mining, Dste

= 1.84, is associated with mine A, then B with Dste = 1.92, and the roughest by
mine C with Dste = 2.20. By connecting lines between consecutive seismic events we
created an image of the sequence of seismic activity and then calculated its fractal
dimension. This exercise was limited to the (x, y, t) domain since the flat distribution
of seismic stations made the z-coordinates less reliable, specifically at the fringes of
the network. Results and the relative hazard ratings are given in Table 3. They show
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that seismic activity does not follow mining exactly. One may speculate that the high
stress and high rate of mining associated with data set B aligned most events with
the excavation faces lowering the fractal dimension of their spatial distribution, but
this has not been tested numerically.

There is also a negative correlation between the fractal dimension of the epicenters
and time of events, Dsxyt, and β, see Tables 3 and 4. There are reports stating
the positive correlation between the b-value and earthquakes, e.g. Aki (1981), King
(1983), Wyss et al. (2004), Chen et al. (2006), but mainly for a single fracturing or a
single fault processes. Hirata (1989) reported a negative correlation due to different
fault systems and Henderson et al. (1999) for induced seismicity where they show a
negative correlation for high loading rates and a positive correlation for slowly loaded
systems. Amitrano (2003) also reported negative correlation stating that diffused
damage is associated with low β whereas localized damage is associated with high
β. The data set B has the highest loading rate of all three and the lowest fractal
dimension, followed by data set C, and the lowest loading rate and the highest fractal
dimension is associated with data set A.
Size distribution parameters. The cumulative potency-frequency plots that include
the inter-event volumes mined as opposed to the recurrence times are shown in
Figure 9.
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Figure 9: Cumulative potency-frequency plots for the three data sets. The convex
curve in the top row represents the UT fit for logPmax=logPmaxo, where Pmaxo is the
largest observed event to date, and the straight line in the bottom row represents
the OE power law fit. The dotted lines show the 95% confidence intervals calculated
assuming that the number of events in each potency interval comes from the Poisson
distribution.

An increase in the cumulative number of events below logP=−1.5 in the data
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sets A and C is the result of an uneven network sensitivity enhanced by development
blasts recorded as seismic events. The 95% confidence intervals show that the UT
relation fits data better than the OE one and that of all three, data set A is the
closest to the OE relation.

In general, seismic hazard should scales positively with α, and with logPmax1
and negatively with β and recurrence times. The Table 4 shows that none of the
traditional size distribution parameters, namely α, β or Pmax1 = α1/β, succeeded
in rating seismic hazard in the three data sets consistently and reliably. The only
parameter that did succeed is the inter-event volume mined, V̄m (≥ P ) = Vm/N (≥ P ),
which rated hazard appropriately for both logP=2.0 and logP=1.5.

Table 4: Size distribution parameters, with hazard rating in parentheses.
Model Parameters Data Set A Data Set B Data Set C

αOE ; αUT 1202; 1318 (2) 2818; 3467 (1) 724; 813 (3)
βOE ; βUT 0.64; 0.59 (2) 0.81; 0.74 (3) 0.62; 0.56 (1)
logPmax1=(logαOE)/βOE 4.8 (1) 4.2 (3) 4.6 (2)
t̄(≥logP=2.0), days 9.2 (2) 8.5 (1) 20.41 (3)
t̄(≥logP=1.5), days 4.3 (2) 2.9 (1) 7.6 (3)
V̄m(≥logP=2.0), m3 1258 (1) 5230 (2) 8811 (3)
V̄m(≥logP=1.5), m3 587 (1) 1784 (2) 3284 (3)

While logPmax1 rated data set A as the highest hazard, it failed the sequence
badly. It demonstrates the ill-suitability of logPmax1 as derived from the OE relation
as the main measure of seismic hazard. When the largest observed events are as
predicted by the logPmax1 in the OE relation, it is inappropriate to infer that this
is the largest possible event (see Frohlich, 1998). The fact that the data follow the
OE power law indicates the potential for even larger events. Only when the largest
observed events are significantly smaller than that predicted by the OE relation, as
in this case, can one infer that the size distribution hazard may be contained. The
inter-event times or the recurrence times t̄ (≥ P ) here are also misleading.

5 Record Breaking Events Induced by Mining

As mentioned above the logPmax1 is not a reliable measure of seismic hazard and
it does not answer the two important questions: (1) what is the size of the largest
possible event and, (2) what is the size of next record breaking event.

The size of the largest possible event induced by mining scales approximately with
the characteristic size of the mine, L, and with the extent of the major geological
structures influenced by mining. If we assume the upper-bound relation between
the maximum magnitude and the linear size of the mine as, mmax = 2.0logL − 2.0
(McGarr and Fletcher, 2002), then for L = 1500 m an average mmax=4.3 or, according
to Hanks and Kanamori (1979), logPmax = 1.5mHK − 1.38 = 5.1. For L = 2,500 m
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the mmax=4.8 and logPmax=5.8. However, there are many mines with characteristic
dimension L ≥ 1,500 m that did not generate seismic events of that size.

The expected size of the next record breaking event can, in some cases, be estimated
from the record breaking theory (e.g. Tata, 1969; Chandler, 1952; Glick, 1978; Nevzorov,
2001, Dargahi-Noubary, 1990; Van Aalsburg et al., 2010). In a sequence {Pj}j=1,2, of
real random variables a record high occurs at r if Pr = maxj≤r {Pj}. Obviously P1 is
always a record. If events are independent and identically distributed, the probability
that a record high, or low occurs at j is 1/j and probability that it is not is (j − 1) /j.
The expected mean number of records high (or low), 〈Nrb〉 is

∑n
j=1 (1/j), which for

large n can be approximated by 〈Nrb (n)〉 =
∑n
j=1

1
j ≈ ln (n) + 0.577215. The variance

V ar (Nrb) =
∑n
j=1 (1/j) −

∑(
1/j2

)
≈ ln (n) − 1.0677. The record sequence is distinctly

non-stationary: with increasing time, i.e., it becomes exponentially harder to beat the
current record, see Table 5.

Table 5: The expected number of records in n independent observations.
n 101 102 103 104 105

〈Nrb〉 2.93 5.19 7.49 9.8 12.1√
V ar 1.17 1.88 2.42 2.85 3.23

To estimate the size of the next record breaking event in our data sets we used
the UT potency frequency distribution to secure the finite mean for the case β < 1.
The parameter Pmax of the UT distribution can be taken as the maximum observed
event to date plus the maximum expected jump in record breaking events to date

logPmax = logPmaxo +4 logPmax. (5)

The maximum expected jump, 4 logPmax, can be estimated as a truncation point of
the distribution of the previous jumps (Cooke, 1979)

4 logPmax = 2 max (∆ logPmaxo)− 0.63
n−1∑
j=0

max (∆ logPmaxo−j)

ej
, (6)

where max (∆ logPmaxo) is the maximum observed jump in the history of records.
The value of the first record breaking event is the potency of the first event to

occur which, most likely, is the mean value of the UT potency frequency distribution,
Prb(1) = β/(1− β)

(
P 1−β
max − P

1−β
min

)
/
(
P−βmin − P−βmax

)
. The value of the second record

breaking event is the mean value of that portion of the UT distribution that lies
beyond the first record, Prb(2) =

´∞
Prb(1)

Pf (P ) dP/
´∞
Prb(1)

f (P ) dP , and recursively the
kth record is

Prb(k) =
β

1− β

P 1−β
max − P

1−β
r(k−1)

P−βr(k−1) − P
−β
max

 , for k = 2, 3, ... (7)

where Pr(k−1) is the potency of the previous record breaking event and the P 1−β
max is

given by logPmax = logPmaxo + 4 logPmax. If observations are independent and
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identically distributed, then the number of records calculated forward should be
equal to the number of records calculated backwards, e.g. the data set A, see Table 6.
For the data set B and C the number of forward records is considerable greater which
is symptomatic of an increasing future hazard.

Table 6: Record statistics.
Record Parameters Data Set

A
Data Set

B
Data Set

C

Number of events N ≥ logPmin 11507 81812 5376
Expected number of records, 〈Nrb〉 9.93 11.89 9.17
Standard deviation,

√
V ar 2.88 3.2 2.74

Observed number of forward records 7 14 11
Observed number of backward records 5 4 5
Max. observed record jump 0.8 0.6 0.5
Average jump of record events 0.4 0.2 0.2
Expected next record, Eq.(7) 3.86 3.05 2.79
Estimated upper limit, Eq.(5) 4.39 3.45 3.11

Figure 10 shows the history of the record breaking events in the volume mined
domain for the data sets A (left), B (centre) and C (right). The predicted ranges of
the next record breaking events calculated by the Equations (7) and (5) are shown
as grey bands. These predictions, like all seismic hazard parameters quoted before,
were calculated using data up to the last observed record – a black dot at the end of
the solid stepping line. The next record in each case is shown as a cross following
the dotted stepping line. There were no new records in the data set A, where rock
extraction was suspended for some time and resumed later at a low rate. The next
record breaking event in the data set B occurred 197 days and 126,778 m3 of volume
mined later and measured logP=2.9, which is 0.15 less than predicted. The next
record in the data set C occurred 540 days and 219,678 m3 later and measured
logP=3.1, which is 0.05 above the estimated range.
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Figure 10: History of the record breaking events in the volume mined domain for the
data sets A (left), B (centre) and C (right). The predicted ranges for the next record
are shown as a grey band and the next observed record as a little cross at the end of
the dotted stepping line.
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If the exponent β of the potency-frequency relation is constant then the Equation
(7) is discrete and one can estimate the magnitude of the next record breaking event
only after the “current” record has occurred. The data analysed to date shows that
in mines β may have a relatively persistent trend, either way. Over the longer term,
however, as mining progresses the stiffness of the rock mass is being degraded and
β tends to drop (Mendecki, 2008). Therefore, the Equation (7) can be expressed as
a function of volume mined by replacing β by β (Vm), and then one can estimate the
magnitude of the next record breaking event every time β changes or, by extrapolating
the observed relationship between β and the Vm, one can forecast future records for
a different production scenarios.
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