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Abstract 

 
The ability to provide rapid, accurate estimates of damage following a large earthquake 
event is critical for effective disaster response. At Geoscience Australia, an engineering 
approach is used to model ground motion, the associated structural damage and loss, 
utilizing the capacity spectrum method (CSM) to estimate structural damage. The 
iterative nature of the CSM requires proportionally more computing time, thus slowing 
the speed at which total loss estimates can be generated. In this study, an alternative 
approach is explored that is still based on the CSM but is not iterative, instead using 
decision trees to predict loss for a given earthquake and building type. The basis for 
these decision trees lie in a data-mining process, whereby a synthetic earthquake 
catalogue was generated that incorporated multiple earthquake scenarios (i.e.: 
sequentially varying earthquake magnitude, ground motion model, site location and 
building type) on the same fault (simulated as the Newcastle fault), with loss calculated 
for each event. CART (Classification and Regression Tree) software was used to 
generate building-specific decision trees, and the predictive accuracy of these trees was 
tested on selected building types using independent test datasets. The variable found to 
be most important in splitting the dataset (the best predictor of loss) for each building 
type was always a particular period of ground motion in the earthquake response 
spectra. This period was also found to be logarithmically related to the elastic period for 
the given building type. It was found decisions trees were able to produce aggregated 
loss estimates within 6% of the estimate generated using the CSM for earthquakes 
greater than magnitude 6 and using the Toro, Sadigh or Allen ground motion model. If 
implemented, the increased computational efficiency of the decision-tree approach 
would enable rapid generation of loss estimates following an earthquake event, and 
sampling of more earthquakes for probabilistic seismic risk analysis (PSRA) to generate 
a better understanding of earthquake risk in Australia.  
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1. INTRODUCTION 
 
The ability to provide rapid and accurate estimates of damage following an earthquake 
is a key priority in seismic risk research, and is central to efficient disaster management. 
Internationally, several groups are dedicated to achieving these rapid earthquake loss 
estimates, including SAFER (Seismic eArly warning For EuRope), WAPMERR (World 
Agency of Planetary Monitoring and Earthquake Risk Reduction) and the automated 
alarm system ‘PAGER’ (Prompt Assessment of Global Earthquakes for Response) 
being developed by the USGS. These agencies aim to provide real-time loss estimates 
following earthquake events using an empirical approach: historical earthquake data are 
used to estimate building fragilities, i.e. the relationship between ground shaking 
intensity and observed structural damage to buildings, which are then used in 
conjunction with maps of shaking intensity (shake maps) to provide loss estimates. In 
Australia, this approach is not practicable as there are few historical examples of large, 
damaging earthquakes in populated areas that can be used as benchmarks for loss 
estimates.  
 
At Geoscience Australia, probabilistic seismic risk analysis (PSRA: the direct financial 
loss and its likelihood of occurrence) and probabilistic seismic hazard analysis (PSHA: 
the ground motion and its likelihood of occurrence) are calculated through an 
engineering-based approach, using a Matlab-based computer application known as 
EQRM (EarthQuake Risk Model) (Robinson et al., 2005). The process used to generate 
earthquake hazard and risk estimates is initially identical, beginning with the generation 
of a synthetic earthquake catalogue, modelling of the associated ground motion and 
probability of occurrence, use of an attenuation model to describe the propagation of 
seismic waves to the locations of interest, and finally, incorporation of a site-response 
model to account for effects of local regolith & geology. However PSRA incorporates 
additional steps: (1) estimation of the probability that a building portfolio will 
experience different levels of damage; (2) computation of the direct financial loss as a 
result of these probabilities; and (3) aggregation of these losses and estimation of 
probability of their exceedance to produce a risk value (Patchett et al., 2005, Robinson 
et al., 2005). Step 1 utilises a method known as the Capacity Spectrum Method 
(hereafter CSM), an approach that compares the capacity of a structure (in the form of a 
pushover curve) with the demands on a structure (the earthquake response spectra; 
Freeman (2004)). The graphical intersection of the capacity curve, and iteratively 
modified demand curve, provide an estimate of the building’s peak response 
displacement and acceleration (Freeman, 2004; Kircher et al., 2005). These in turn are 
used with fragility curves to estimate probabilities that the building experiences 
different levels of damage for three components of the building – the displacement 
sensitive structural system, the displacement sensitive non-structural system and the 
acceleration sensitive non-structural elements. From the damage probabilities, total and 
percentage loss are calculated using a financial loss model. Percentage loss is defined as 
the repair cost divided by the total replacement value. Owing to its iterative nature, the 
CSM is the most computationally-intensive step in the PSRA calculation.  
 
The goal of this study was to investigate using decision trees as an alternative approach 
to predicting financial loss from an earthquake, which may be faster and of comparable 
accuracy to the CSM. The proposed approach is still based on the CSM (the CSM is 
used to create a synthetic loss dataset), however decision tree rules that are generated 



using this synthetic loss dataset are applied to other real or modelled earthquakes to 
approximate loss. This removes the iterative step in the loss calculation, thus increasing 
the speed of the calculation. If successful, employing decision trees may be beneficial in 
two ways: in the event of a large earthquake, it will allow Geoscience Australia to 
provide estimates of loss to disaster management agencies quicker than was previously 
possible; and, it will allow us to sample more earthquakes for PSRA and produce a 
better understanding of earthquake risk in Australia.  
 
2. METHODS 
 
2.1   Generating a synthetic loss dataset  
A synthetic loss dataset was generated using the EQRM application to model ground 
motions and losses at multiple sites for multiple earthquake scenarios. 200 sites were 
spaced evenly over 4 degrees of longitude (equal latitude), perpendicular to a vertically-
dipping, N-S trending fault and each with the same building type. The Australian 
engineers extended HAZUS building type classification was used (Robinson et al., 
2005). At each site, ground-motions were calculated at several periods within the 
earthquake response spectra (36 spectral periods from 0 to 3 seconds) for varying: 
regolith site classes (National site classes BC, B, C, CD, D, DE and E); earthquake 
magnitudes (4.5, 5.0, 5.5, 6.0, 6.5, 6.8, 7.0, 7.2, 7.5); and, ground motion models (Toro 
(Toro et al., 1997), Sadigh (Sadigh et al., 1997) and a preliminary Australian model 
(hereafter referred to as the Allen model; per comm. T. Allen)). Loss (structural 
damage) was calculated for each combination. The resulting dataset consisted of 37800 
loss calculations for a range of event scenarios on the same fault  (200 sites × 7 regolith 
classes × 9 earthquake magnitudes × 3 ground motion models = 37800) for the 
particular HAZUS building type (refer to Table 1). This process was repeated for a 
different building type, until all 56 of the HAZUS building types had been run. For each 
building type, several variables were exported to a text file, including building type, 
Joyner-Boore distance, total percent loss, earthquake magnitude, ground motion model, 
site class and ground motions at a range of periods in the response spectra (36 periods 
between 0 and 3 seconds).  
 
Table 1     Australian engineers extended HAZUS building types (Robinson et al., 2005) 

Building 
type Code Description Building 

type Description Description 

1 W1 Timber frame < 5000 
square feet, 1-2 stories 

29 RM1L 

2 W2 Timber frame > 5000 
square feet, all stories 

30 RM1M 

Reinforced 
masonry walls + 
wood or metal 
diaphragms, low or 
mid-rise 

3 S1L 31 RM2L 
4 S1M 32 RM2M 
5 S1H 

Steel moment frame, 
low, mid and high-rise. 33 RM2H 

Reinforced 
masonry + precast 
concrete 
diaphragms 

6 S2L 34 URML 
7 S2M 35 URMM 

Unreinforced 
masonry, low + 
mid-rise 

8 S2H 

Steel light frame, low, 
mid and high-rise. 

36 MH Mobile Homes 
9 S3 Steel frame + cast, 

concrete shear walls 
37 W1MEAN Timber mean 

10 S4L 38 W1BVTILE Timber brick 
veneer walls + tiled 
roof 

11 S4M 

Steel frame + un-
reinforced masonry in-
fill walls, low, mid and 
high-rise. 39 W1BVMETAL Timber brick 

veneer walls + 



metal roof 
12 S4H 40 W1TIMBERTILE Timber walls + 

tiled roof 
13 S5L 41 W1TIMBERMETAL Timber walls + 

metal roof 
14 S5M 42 C1LMEAN Concrete moment 

frame, low-rise, 
mean 

15 S5H 

Steel frame + concrete 
shear walls, low, mid and 
high-rise. 

43 C1LSOFT Concrete moment 
frame, low-rise, 
soft-story 

16 C1L 44 C1LNOSFT Concrete moment 
frame, low-rise, 
non-soft-story 

17 C1M 45 C1MMEAN Concrete moment 
frame, mean 

18 C1H 

Concrete moment frame 

46 C1MSOFT Concrete moment 
frame, mid-rise, 
soft-story 

19 C2L 47 C1MNOSOFT Concrete moment 
frame, mid-rise, 
non-soft-story 

20 C2M 48 C1HMEAN Concrete moment 
frame high-rise 

21 C2H 

Concrete shear walls, 
low, mid and high-rise. 

49 C1HSOFT Concrete moment 
frame, high-rise, 
soft-story 

22 C3L 50 C1HNOSOFT Concrete moment 
frame, high-rise, 
non-soft-story 

23 C3M 51 URMLMEAN Unreinforced 
masonry, low-rise, 
mean 

24 C3H 

Concrete frame + un-
reinforced masonry in-
fill walls, low, mid and 
high-rise. 

52 URMLTILE Unreinforced 
masonry, low-rise, 
tile roof 

25 PC1 Precast concrete tilt-up 
walls 

53 URMLMETAL Unreinforced 
masonry, low-rise, 
metal roof 

26 PC2L 54 URMMMEAN Unreinforced 
masonry, mid-rise, 
mean 

27 PC2
M 

55 URMMTILE Unreinforced 
masonry, mid-rise, 
tile roof 

28 PC2H 

Precast concrete frames 
with concrete shear 
walls, low, mid and high-
rise.  

56 URMMMETAL Unreinforced 
masonry, mid-rise, 
metal roof 

 
2.2   CART (Classification and Regression Tree Analysis) 
CART is a software package that builds classification and regression trees for 
predicting continuous variables (regression) and categorical variables (classification). 
The rationale for using CART was: (a) to find which variables appear most important in 
determining structural damage (loss); and (b) to generate a decision tree (rules) using 
these variables and their values, which will allow us to predict loss. Advantages of 
using CART are that it is non-parametric, and can evaluate data that are highly-skewed 
or multimodal (Lewis, 2000). In addition, it is well suited for data-mining in that it can 
reveal non-obvious, complex relationships between the splitting variables and the 
predicted variable.   



 
CART analysis involves four steps: (1) tree building (2) end of tree building (3) tree 
‘pruning’ (4) optimal tree selection. These steps are discussed in further detail as 
follows: 
(1)  Tree-building begins at the root node, and CART finds the best possible variable to 

split the node into two child nodes, based on an exhaustive search of all possibilities 
of splitter variables and the values of the variable to be used to split the node. These 
child nodes are then split and so forth.  

(2)  Splitting stops when there is only one data-point left in each node, or when all data-
points in a node are the same. The point at which this splitting stops is called the 
‘maximal tree’. This tree often ‘overfits’ the data, because it follows every 
idiosyncrasy in the dataset that may not occur in another, independent dataset. 

(3)  In tree pruning, the method of ‘cost complexity’ (a measure of how much additional 
accuracy a split will add to the entire tree vs. the extra tree complexity) is used to 
prune child nodes from the maximal tree. 

(4)  ‘Optimal tree’ selection is performed by cross validating the dataset. This is done 
by applying the maximal tree created from one set of observations (learning data), 
to an independent set of data (test data) to determine its predictive accuracy. The 
point where the tree begins to overfit the learning data (i.e. starts to follow the 
idiosyncrasies of the data vs. general trends) is found where the predictive accuracy 
of the tree begins to decrease (this is the optimal tree). 

 
The purpose of generating a decision tree for this study was to enable the accurate 
prediction of loss percentage using the value of certain predictor variables. In order to 
achieve this, we first needed to establish which variables were statistically most 
important in determining percent loss. To do this, percent loss was selected as the target 
variable (the variable we hope to predict), and the following variables were selected as 
potential predictor variables (splitting variables): earthquake magnitude, ground motion 
model, regolith site class, distance, and ground motions at 36 spectral periods (from 0 
secs through to 3 secs). 30% of the input data was selected at random for cross-
validation of the tree. As the input variables were mainly continuous, CART was run in 
regression-tree mode. 
 
The output of this process was a rank, indicating relative importance of these predictors. 
To avoid having up to 40 potential predictor variables, the next step was to run the 
regression-tree analysis again with the highest-ranked predictors (1,2,3), and assess the 
relative accuracy and size of the optimal tree. Criteria imposed on this process were as 
follows: 

� A minimum of 5 data-points per terminal node;  
� Less than 100 terminal nodes in final decision tree ; 
� Absolute within-node variability less than 10%, and ideally less than 5% (this 

affects the ability of the tree to accurately predict percent loss values within 5 or 
10%) (Figure 1); and 

� The tree was independently tested using 30% of the learning dataset (cross-
validation (CV)): the optimal tree is found where maximum predictive accuracy 
of the tree is observed (corresponds to the minimum CV cost). 

 
Frequently, the optimal tree had in excess of 100 terminal nodes. In this case, ‘best-
trees’ were selected using an automatic tree-pruning procedure that chooses a smaller 



  
 

 
Figure 1  Terminal nodes sorted by target variable prediction (percent loss), illustrating (A) 
good tree-building with low within-node variability (Building type 50, 1SE rule, 3 predictors, 
44 terminal nodes), and (B) poor tree building with multiple nodes overlapping in values and 
with large within-node variability (Building type 41, 1SE rule, 2 predictors, 48 terminal nodes). 
 
 
tree with CV costs that are not much greater than the minimum CV cost (optimal tree). 
This automated pruning uses a standard error (SE) rule, for example by applying a 1 SE 
rule, a tree will be chosen that has a CV cost not greater than the minimum CV cost + 1 
SE of the CV cost. 
 
After selecting the ‘best tree’ (with 3 or less predictor variables, less than 100 terminal 
nodes and a relative error close to that at the optimal tree), a final test of the predictive 
power of the trees was performed.  On selected building types (HAZUS types 
1,6,11,16,21,26 etc up to 56), a second raw dataset was generated using EQRM for 
different earthquake magnitudes than those in the learning dataset (earthquake 
magnitudes 4.7, 5.2, 5.7, 6.2, 6.6, 6.9, 7.1, 7.4). Applying the ‘best trees’ to these 
datasets provides an indication of the total predictive accuracy of the decision trees. 
This was always smaller than 0.5 RMS error for the whole tree, indicating that the tree-
building methodology is robust. For each node, a mean value and standard deviation is 
given, and for the best-tree selected for each building type, these values were extracted 
into a table to be used later in the rule implementation (discussed below). 
2.3   Rule generation and implementation 

A 

B 



In CART, the rules for each terminal node are output in C++ language. The ‘UltraEdit’ 
programme was used to edit the rules to be compatible with MATLAB, and a loss 
calculation was added to each node in the rule.  The loss values were calculated by 
randomly sampling the standard deviation of loss values for the node, and adding this 
value to the mean value for the node. Taking the variability of loss values within each 
node into consideration is more realistic than assigning the same mean loss to all sites 
that fall into a particular range of ground motion. The CART rules were converted to .m 
files so they were able to be run as scripts in MATLAB. A function was written that 
called these rules depending on the building type being assessed for damage in the 
event catalogue.  
 
2.4   Testing the two approaches 
To assess the performance of the full capacity-spectrum approach vs. a decision-tree 
approach to calculate loss, another synthetic loss dataset was used that incorporated 
every HAZUS building type. Instead of 1400 sites with the same building type (as used 
to create synthetic datasets for CART analysis and rule development), 140 sites were 
used per building type, run under different earthquake event scenarios (earthquake 
magnitudes 5.5, 6, 6.5, 7, 7.5) and 3 ground motion models (Toro, Sadigh and Allen). 
This produced a dataset with in excess of 100,000 individual loss scenarios that could 
be used to test the CART-rule methodology. In addition, instead of a linear array of 
sites extending from the earthquake epicentre, the 140 site locations for each building 
type were randomly sampled from within a 4° radius extending from the epicentre 
(different for each building type), to incorporate aleatory uncertainty. Using the site-
database, the relevant rule was accessed for each building type, with each rule accessing 
the appropriate periods of ground-motion (predictor variables) needed for that building 
type to estimate loss.  
 
In addition, a second synthetic loss dataset was created using the same range of 
earthquake event scenarios as the first test dataset, but using the Atkinson & Boore 
ground motion model (Atkinson & Boore, 1997). The rationale here was to test the 
performance of the CART rules by applying them to a dataset that was generated using 
a ground motion model different to those initially used in the primary synthetic loss 
dataset.  
 
3. RESULTS AND DISCUSSION 
 
3.1   Synthetic loss datasets: primary predictor variables for each building type 
Regression tree analysis of the learning datasets for each building type indicated that 
particular periods of ground motion were always found to be the best splitting 
(predictor) variables (summarised in Table 2 below). These periods of ground motion 
are positively and logarithmically correlated with the elastic periods for each building 
type (Telastic) (see Figure 2).  Instinctively this conforms to the belief that buildings 
should experience the most damage when subjected to ground shaking at periods near 
their natural/modal period (Telastic).  
 
 
 
 
 
 
 



Table 2   Highest ranked splitting variables for expanded HAZUS building types 
Building 

type 
Top 

splitter* 
Building 

type 
Top 

splitter* 
Building 

type 
Top 

splitter* 
1 0.35 20 1.6 39 0.8 
2 1.1 21 1.9 40 0.9 
3 1.4 22 1.1 41 0.7 
4 2.1 23 1.5 42 0.8 
5 2.8 24 1.9 43 0.9 
6 1.3 25 0.8 44 0.8 
7 1.8 26 1.2 45 1.4 
8 1.8 27 1.7 46 1.5 
9 1.1 28 2.1 47 1.4 
10 1.3 29 1.0 48 2.3 
11 1.8 30 1.4 49 2.4 
12 2.2 31 1.0 50 2.2 
13 1.3 32 1.4 51 0.25 
14 1.7 33 1.7 52 0.25 
15 2.1 34 0.9 53 0.2 
16 1 35 1.0 54 0.4 
17 1.4 36 0.9 55 0.4 
18 1.6 37 0.7 56 0.3 
19 1.1 38 0.9   

* Period (T) of ground motion within the earthquake response spectra 

 

 
Figure 2   Relationship of periods in the response spectra to Telastic of each building type 

 
3.2   Capacity Spectrum Method vs. decision-tree approach 
Loss estimates calculated using the CSM and decision-tree approach were compared in 
two ways to assess the performance of the decision-trees: comparison of the aggregated 
losses for each building type for a particular earthquake magnitude and ground motion 



model; and, comparison of the aggregated losses for all building types for a particular 
earthquake magnitude and ground motion model.   
 
For higher earthquake magnitudes (eg: Mag 7), results obtained using the decision-tree 
approach closely match those generated using the CSM (Figure 3), with the decision-
tree approach usually estimating slightly greater losses than the CSM.  For lower 
earthquake magnitudes, there is greater discrepancy between the two approaches: some 
building types have the same loss estimate (eg: #54), however others have 
conspicuously contrasting estimates (eg: #38) (Figure 4). This suggests that the rules 
generated for #38 do not adequately characterise the response of this building type for 
low levels of ground motion. This may reflect a need for a different-sized decision tree 
(larger), or a more complicated relationship between predicted loss and the top splitting 
variable compared to other building types. 
 

The differences in total absolute losses predicted using decision trees vs. the CSM are 
illustrated in Figure 5, given as percentage difference from the CSM values. Several 
trends are clearly seen, firstly that the agreement between the two approaches improves 
as earthquake magnitude increases. At magnitude 5.5, the decision-tree approach 
consistently over-estimates total loss, but the two approaches converge at magnitude 
7.5.  For results calculated using the Toro or Sadigh ground motion models for 
earthquake magnitudes greater than 6, the decision-tree approach produces estimates 
that are within 4% of the CSM estimates. Estimates generated for the Allen ground 
motion model are all within 6% for magnitudes 6 and above. At low earthquake 
magnitudes (5.5), poor agreement is observed between the two approaches for all 
ground motion models, with the CART rules overestimating loss. This may be an
 

 
Figure 3   Comparison of aggregated losses for each building type using the EQRM vs. CART 
rules for a magnitude 7 earthquake. Ground motions calculated using the Toro model.  
 



  
Figure 4   Comparison of aggregated losses for each building type using the EQRM vs. CART 
rules for a magnitude 5.5 earthquake. Ground motions calculated using the Toro model. 
 
artefact of the data processing: a loop was implemented whereby if negative or zero 
loss-estimates were calculated using the rules (for low levels of ground motion, mean 
loss could be 0.2% (absolute) but SD could be 0.3% (absolute) thus a negative loss is 
possible), the calculation would be repeated until a positive value is reached. Thus for 
low levels of ground motion, the data may be positively biased.  
 
The second distinct feature in the results is how poorly the CART rules predict loss 
from ground motions calculated using the Atkinson and Boore ground motion model. 
This confirms that the ground motion models are truly unique, and that the choice of 
ground motion model significantly affects the final loss calculations. The implications 
of this are that the CART rules generated are specific to both the variables and their 
values that were used to create a synthetic loss dataset (the Atkinson and Boore model 
was never used in generating a synthetic loss dataset and subsequent rule generation). 
Thus to produce more ‘generally applicable’ decision-tree rules (likely to be associated 
with a decrease in predictive accuracy), a larger synthetic test dataset should be used in 
the CART analysis. Similarly, given that ground motion periods are found to be the 
most important predictor variables, rather than create general rules developed from 3 
ground motion models, a unique rule set could be created for each ground motion 
model. This should be associated with increased predictive accuracy.  
 



 
Figure 5  Percent difference in the aggregated loss estimates for a range of earthquake 
magnitudes and ground motion models between the EQRM and the CART rule-based approach. 

 
4. CONCLUSIONS 

 
� CART is a powerful and useful software tool for revealing complex relationships 

between variables in multi-variate datasets.  
� The variables determined by CART as the best splitters (i.e. those that are most 

closely related to structural damage) were always particular periods of ground 
motion in the earthquake response spectra (eg: response spectral acceleration at T 
= 0.5 seconds) rather than variables such as Joyner-Boore distance, site-class (soil 
type), or earthquake magnitude. 

� Using decision trees to generate a rule-set for each building type that could be 
found in a site database (portfolio), we have successfully demonstrated that for 
earthquake magnitudes above 6, and using the 3 ground motion models rules in 
the EQRM calculation that were used to develop the CART rules (i.e. Toro, 
Sadigh and Allen), the decision-tree approach is able to produce loss estimates 
within 6% of the loss estimate produced using the full capacity spectrum method 
(EQRM). When the Atkinson and Boore ground motion model is used, the CART 
rules fail to produce loss estimates that are comparable to the EQRM loss 
estimates. Thus, the decision tree rules perform best (i.e. are able to predict loss) 
when applied to ground motions that are calculated using the ground motion 
models originally used to develop the rules. 

� The decision-tree approach for generating loss estimates is computationally more 
efficient than the full CSM, and by accepting the trade-off of a small decrease in 
the accuracy of loss estimates (for earthquake magnitudes greater than 6), it 
allows sampling of significantly more earthquakes, thus should produce more 
rigorous estimates of earthquake risk. In addition, if site-databases are available 
for major population centres in Australia, and a suitable Australian ground-motion 
model can be derived, decision trees may enable rapid estimates of loss following 
future earthquake events.   
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