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Abstract

Slender free-standing objects in a building could be excited into rigorous rocking and/or
sliding motion in an earthquake. Some objects might experience overturning and hence
damage when impacting on the floor. Objects which do not overturn might still
experience significant damage depending on the severity and nature of the collision with
the neighbouring objects and with the floor when excited into motion. This paper
presents fragility curves which define the probability of overturning of objects for given
object dimensions, dynamic characteristics of the building and location of the object
within the building. A method for calculating the level of shock experienced by the object
on pounding with the floor is also presented.

1. Introduction

Contemporary codes of practice typically relate the seismic actions on non-structural
components and building contents to the maximum acceleration of the floor (eg. Draft AS
1170.4, 2006; AS/NZS 1170.5, 2005). A dynamic amplification factor may be applied
depending on whether the component is attached to a flexible mounting. This method of
analysis does not accurately take into account the highly non-linear behaviour of the
rocking motion in which overturning would occur if the centre of gravity of the object has
been displaced past the pivotal position of rocking. For objects that have not overturned,
significant level of damage might still be caused by the pounding of the object with the
floor and with neighbouring objects. The research described in this paper is aimed at
modelling the vulnerability of objects to overturning. Results are presented in the form of
fragility (vulnerability) curves in Section 2. A simple method of estimating shock
sustained by objects which do not overturn will also be described in Section 3.

2. Vulnerability of objects to overturning

Fragility curves are normally presented to predict the probability of damage to a
structure, or component, with increasing intensity of the applied actions. With seismic
actions, the intensity is usually represented by the notional peak ground acceleration
(PGA), or peak ground velocity (PGV). Similar fragility curves could be used to predict
the extent of damage to non-structural components in a building. However, this
conventional format of presenting vulnerability to damage is not as effective in providing
information on the relative vulnerability for a range of components with different
properties, since only one item of interest is represented by each curve. Fragility curves
for overturning of objects as presented in this paper are mostly based on correlating the
probability of overturning with variations in object height when the thickness and shape
of the object is kept constant (eg. Figure 1). Fragility diagrams presented later in the
paper contain multiple fragility curves with each representing objects of a constant
thickness but varying height (eg. Figure 2a). Thus, the relative vulnerability to
overturning can be shown for objects of varying size and aspect ratio in one diagram.

In this study, the earthquake excitations were based on an ensemble of six artificial
accelerograms with random phase-angles generated by program GENQKE (Lam et al,
2000) to simulate the ground shaking of a Class D site in a magnitude 6.5 earthquake at
a site-source distance of 45 km. The attenuation of the earthquake with distance was
based on the crustal model of south-eastern Australia as adopted in the study of Lam et
al (2005). The intensity and frequency content of the simulated motions were consistent
with the design response spectrum stipulated by the new Australian Standard for seismic
actions for a seismic coefficient of Z = 0.08, which is the level of seismic hazard defined
for most Australian capital cities on the eastern seaboard including Melbourne, Sydney
and Canberra for a return period of 500 years (Draft AS1170.4, 2006).
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The objective at this stage of the investigation was to reveal the trend of the vulnerability
to overturning. Hence, only one earthquake scenario was considered. Uncertainties
associated with the buildings’ dynamic properties and objects’ dimensions have not been
incorporated into the fragility curves, in which the random variability of the applied
excitations was only taken into account. These fragility curves can be further developed
to incorporate variability in the objects’ dimensions and other related parameters.

All the rectangular objects were assumed to be free-standing, resting on a perfectly
inelastic surface, and have uniform distribution of mass. The filtering of the floor motions
was in accordance with: (i) the fundamental mode of vibration of a ten-storey building
with natural period equal to 1 second and a linear deflection profile, and (ii) the first
three modes of vibration of a 66-storey building model of height 280 m based on micro-
tremor monitoring of the Republican Plaza, Singapore (Brownjohn & Pan, 2001). The
fundamental natural period of vibration of the second building model was 5.4 seconds.

When the object thickness (t) was fixed, non-linear time-history analyses that could
simulate large displacement (rocking) behaviour were applied to objects with heights
varying between h = 0.1 m to 4 m (with 100 mm increments) to determine if the object
could overturn. Details of this type of analyses have been presented in Al Abadi et al,
2004 & 2006. The total humber of simulations in the construction of a fragility curve was
240 (ie. 6 accelerograms x 40 models of varying height). An example of such a fragility
curve is shown in Figure 1 in which the object thickness was kept at t = 100 mm and the
floor excitations were subject to filtering of the 10-storey building up at the roof level.
The scattered plot shown by the “diamond” symbols in the figure indicate the actual
percentage of overturning observed from the 6 analyses undertaken for every increment
of object height h. The solid line shown in the figure represents the “best-fit” cumulative
log-normal probability density function F{h} which is parameterized by the mean and
standard deviation of h (with notation m and s respectively) as shown by equation (1).
Statistical analyses have been applied to verify the adopted function form for the fragility
curves and to test the “goodness-of-fit” (Shinozuka et al, 2001). It is noted that 240
models were analysed for each object thickness in order that a reliable estimation of the
mean and log-standard deviation could be achieved.

|II

The “optimal” values of m ands that achieve the best match of the F{h}function with
the observed rate of overturning were calculated using the Maximum Likelihood Theory
(Shinozuka et al, 2000) which is briefly described herein. With overturning analyses
undertaken on 240 cases (ie. N = 240) the maximum likelihood parameter L is defined
by equation (2).
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where i identifies each of the N (=240) no. of cases and x; = 1 or 0 if overturning is
predicted to occur , or not to occur, respectively by the time-history analysis. The values
of uw and owere determined for the conditions where the value of L as defined by equation
(2) was maximized, using equations (3a) and (3b) respectively.
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Figure 1 provides a holistic, and simple, representation of vulnerability of objects to
overturning with t = 100 mm and floor excitations as specified. It is shown that with
such conditions most objects of height equal to, or exceeding 1 m, would be most likely
to overturn (with probability of overturning close to 100 %). The probability is reduced to

slightly above 50% for object height equal to half a metre.

Further fragility curves were
constructed for different object
thicknesses and excitations based on
different floor levels within the 10-
storey and the 66-storey buildings
(refer fragility curves presented in
Figure 2).

It is shown that the fragility curves
are very sensitive to the object
thickness. For example, the
probability of overturning of objects
with thickness equal to 500 mm never
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the object overturning behaviour
(Franke et al, 2005). For example,
objects in the 66-storey building are
much less likely to overturn than in the 10-storey building when other parameters are
kept the same. Objects positioned at mid-height of the 66-storey building appear least
vulnerable out of all the presented cases.

Figure 1: Fragility curve for 100mm thick
objects at roof of 10-storey building

Fragility curves can also be extended to incorporate multiple earthquake scenarios that
have been identified from the de-convolution analysis of the seismic hazard model for an
area (in which case vulnerability curves associated with any pre-defined level of PGV
could be obtained by aggregating probability of overturning calculated for each
contributing earthquake scenario; refer companion paper Lumantarna et al, 2006).
Example of such fragility curves is shown in Figure 3 for specific objects of certain
dimensions.
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Figure 3: Fragility curves at the rooftop of 10-storey building for two rectangular objects

3. Modeling level of shock on rocking objects

Objects that do not overturn might still be damaged (or have their contents damaged) by
shocks sustained at the base of the object when pounding on the floor during the course
of rocking. In the worst case (ie. at the threshold of overturning) the centre of gravity
(c.g.) of the rectangular object could be displaced by an amount equal to half of the
object thickness (ie. t/2). The angle of rotation of a slender object measured from the
horizontal is accordingly equal to t/h and its c.g. lifted by the amount defined by

equation (4).

The potential energy gained by the lifting of the object as defined by equation (5) will all
be converted to kinetic energy which would in turn be dissipated by the impact (it is
assumed that the base of the object would not fall flat on the floor but instead only its

edge is engaged with the impacting action).
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It is the objective of this section to describe the modeling that is required to predict the
level of shock experienced on impact. Factors controlling the impacting actions include
the amount of kinetic energy to be dissipated, the geometry and stiffness properties of
the object, and the stiffness property of the flooring materials and details of the edge of
the object which is engaged with the impact. Modeling the impacting action by finite
elements may consume a great deal of memory since very fine meshing is required of
both the object and the floor surrounding the point of impact. Significantly, the time-step
has to be very small given that the impact would only last for a few milliseconds
depending on the hardness of the materials that are affected. Given that the
computations need to take into account geometrical non-linearity, the dynamic stiffness
matrix requires reconstruction at every time-step. Thus, the amount of computational
time increases exponentially with the number of degrees of freedom in the finite element
model.

PE=MgA,, =

The investigation described herein was concerned with a computer server cabinet (which
can be modeled as a rectangular body). Small studs were attached to the edges of the
cabinet at the base. Thus, the floor surface was in direct contact with the surface of the
studs as illustrated in Figure 4. An important feature of the modeling was the
simplification of the cabinet into a point mass object model. The size and geometry of the
object was to match with that of the studs but the density of the point mass was
artificially increased in order that its total mass (M) was made to equate with that of the
cabinet as a whole. If the point mass was lifted by the amount defined by equation (4)
the potential energy gained by the lifting would then be identical to the potential energy
gained by the lifting of the cabinet as defined by equation (5). Given that the force-
indentation relationship, or F{8}, of the base stud of the cabinet into the flooring
material has been accurately represented by the point mass model, the force (F)
experienced by the floor would also be accurately represented at any instance during the
impact.

Figure 4 Rectangular object
model and point mass
obiect model

Rectangular Object Point Mass Model F — d Relationship

Finite element analysis could be undertaken on the point mass object impacting on the
floor for calculating the level of shock (as = F/M). This approach to modeling waives the
need to model the cabinet as finite elements and hence represents significant savings in
computational time. If the stud was spherical, the analysis could be simplified further by
employing closed-form solutions (Hertz law) to model the force-indentation relationship
of a sphere impacting on the floor (which is modelled as a half-space). In fact, the point
mass model could take any geometry which matches with the actual shape of the stud.
For example, the geometry of the point mass can take the shape of the rubber stud
commonly used for isolating the base of metal cabinets from the floor. If the floor surface
was an order of magnitude harder than that of the stud, the force-indentation, or F{8},
relationship could be based purely on the stiffness behaviour of the stud in isolation, in
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which case no finite element modeling would be required. No matter which approach is
used to obtain the F - & curve, the maximum impact force Fmax), and maximum
indentation (8max), could be identified at the point on the curve where the total amount of
absorbed energy equals the amount of potential energy defined by equation (5). This
method of calculating the value of Fhax , and hence as max (= Fna/M) is summarized by
equations (6a) - (6b).

Ornax
M.gt? 3 fF{ﬁ};i(S
5=0

2h
_ F%Smax}
M

smax

(6a)

a
(6b)

Equations (6a) and (6b) were based on the worst case of an object being lifted to the
limit of overturning. These equations could be modified for calculating the value of as
max for any arbitrary lift of the object.

Finally, the level of shock experienced by the cabinet at its edge (acqge) Can be related to
the calculated value of as max using equations (6¢) - (6d) which were derived by taking
moment about the pivotal edge of rocking, and by equating the calculated moment to the
rate of change of angular momentum immediately following impact.

. a
F t=18= & g2 Lo
3 t (6¢)
3 2
aedge = d 2 asmax (6d)l
4 MR

where R is the length measured from the centre of the object to its corner, Io is the
mass moment of inertia of the cabinet around the pivotal edge ([, = 4/3MbR2), and 0

is the angular acceleration of the object during impact (0 = oige /t).

Equation (6d) is based on the assumption that the rocking motion of the rectangular
object comes to an abrupt end following the impact of the base stud with the floor. This
assumption is generally valid for squat objects but may over-predict the amount of
absorbed energy with slender objects. A more accurate expression to predict the value of
Aedge IS defined by equations (6e) — (6f) which takes into account the fact that only part
of the kinetic energy is absorbed by the floor (and base stud) as the rocking motion
continues due to the angular motion of the object.

4 - 3t* L.
edge 4MR2,\/1_R[2) smax

(6e)

2
t
R,=1- 0.375(5) (6f)

where Rp is the ratio of the angular velocity immediately after and before the impact.

The accuracy of equations (6a) - (6f) in predicting the level of shock experienced by the
edge of the cabinet (aeqge) has been evaluated experimentally by comparing the
calculated values with the directly measured values (refer Table 1).

Table 1 Comparison of calculated and directly measured values of aedge

Sample no. | @s max | Aedge Aedge
from equations (6e) - (6f) | from direct measurements
1 7.3 3.3 3.4
2 7.3 3.3 3.45
3 10.4 | 4.6 4.9
4 10.4 | 4.6 4.8
5 11,5 | 5.1 5.3
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4. Conclusions

This paper presents unique fragility curves for overturning of objects in buildings when
subject to code-compatible earthquakes. These curves predict the probability of
overturning for objects with different thicknesses and heights that are located at different
levels with two example buildings. In addition, Fragility curves incorporating multiple
earthquake scenarios that have been identified from the de-convolution analysis of the
seismic hazard model for an area are also presented. Based on these curves critical
objects as well as critical building levels can be easily identified. The paper also presents
a methodology for estimating the maximum impact shock on objects due to rocking. An
equivalent point mass system is proposed to represent solid rectangular objects to
simplify the computation’s time demand. This method would assist building owners and
operators in ensuring continuing operation of critical components after an earthquake
event.
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