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ABSTRACT 
 
Magnetorheological (MR) fluid dampers have been an attractive candidate in structural control because of 
its great potential in the mitigation of dynamic effects caused by seismic excitations in civil engineering 
structures. The MR damper features a passive mode that is fault-safe under disastrous situations such as 
earthquakes. It also requires only a very small amount of driving power as compared to the active mass 
control devices. A major drawback of MR damper applications is, however, the nonlinear hysteresis 
characteristics in the force/velocity relationship. Sliding mode control, well-recognised for its super-
property of robustness to parametric uncertainties and un-modelled disturbances in control systems, 
appears to be suitable for structural control using MR dampers. To overcome the difficulty in obtaining an 
exact parameter set characterising the MR damper dynamics in a wide operating range, the effect of 
uncertainties arisen from the damper parameters is to be handled by using a multi-level sliding mode 
controller, proposed in this paper. Here, the control effort is quantised into a finite number of levels, 
corresponding to an appropriate set of the damper parameters. This approach avoids the need for 
extensive parameter identification experiments, and also the unnecessary energy consumption usually 
associated with the discontinuous control component. The effectiveness of the proposed controller is 
demonstrated by simulations. 
 
1. INTRODUCTION 
 
As human society develops, civil structures are being built at an enormous pace.  It becomes, therefore, a 
crucial requirement to protect the structures against adverse conditions, e.g., earthquakes, so that lives of 
human occupants can be safeguarded. A possible approach is to fabricate strong structures but this 
inevitably incurs a high capital cost. Alternatives are developed from the adoption of active and semi-
active control techniques (Spencer and Sain 1997, Nishitani and Inoue 2001). 
 
Among the active control methods, a mass is usually installed on the top of the building and its movement 
is controlled such that responses of the building to excitations are reduced (Adhikari and Yamaguchi 
1997, Ikeda et al. 2001, Ha et al. 2001). A major disadvantage of these methods is that a power source is 
needed to implement the control action while this power source itself may not be available during 
hazardous situations. Hybridisation of active and passive control also finds its application in base 
isolations (Zhao et al. 2000) where the demand for power sources at critical moments is partly relaxed. 
 
On the other end of the structural control spectrum, one may find a promising application of such device 
as the magnetorheological fluid damper (MR damper) being well applicable. Semi-active in nature, this 
device is able to change its damping force upon the application of an external magnetic field (Alvarez and 
Jimenez 2003). The salient advantage of this device is that it can be operated in a passive mode when 
acting as a conventional mechanical damper. Another advantage is that the power required is 
comparatively small and can therefore remain in operation during an earthquake (see, e.g. Spencer et al. 
1996 and Djajakesukma et al. 2002). Although the MR damper is so attractive, it inherits a major 
weakness from its non-linear hysteretic force/velocity characteristics. Consequently, complicated 
modelling and parameter identification are required before the damper can be put into successful control 
applications.  
 
In implementing MR damper based structural control, neural networks have been employed in modelling 
the damper (Wang and Liao 2005). The neural network is also applied in active control of structures 
under earthquake excitation (Cho et al. 2005). Other control techniques that have been applied in various 
research publications include the adaptive bang-bang control (Lim et al. 2003) and sliding mode fuzzy 
control (Kim and Yun 2000). Although applied in some control domains, fuzzy control design normally 
requires some form of empirical expertise or the use of some tuning schemes (Wang and Lee 2002). 
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For high performance, robust techniques are suggested for the area of structural control. Several control 
strategies were compared in (Jansen and Dyke 2000). Among these control strategies, namely, the 
Lyapunov design, decentralised bang-bang, maximum energy dissipation and clipped-optimal control; the 
clipped-optimal control was found to outperform the others. This kind of control strategy can be cast in 
the category of switching control where the variable structure or sliding mode control (Edwards and 
Spurgeon 1998) has demonstrated successful applications to non-linear and uncertain systems (Lu and 
Zhao 2001). In particular, promising structural control results have been reported in (Yang et al. 1994). 
 
The related work previously cited prompt to the suggestion that a sliding mode controller is effective in 
reducing seismic excitations in structures. The MR damper also has another attractive feature in building 
control because of its fault-safe passive operation mode. In this work, the MR damper is employed in 
reducing earthquake excitations of a 5-storey scaled down building (Djajakesukma et al. 2002). In order 
to cope with the non-linear hysteresis force/velocity characteristic, a sliding mode controller (SMC) is 
proposed. As a too complicated model for a MR damper, obtained via any identification technique, may 
not be necessarily required for the control purpose. The modelling uncertainties can be handled by the 
SMC for its proven robust performance. Furthermore, the control force is quantised such that a limited 
damper parameter identification tests becomes sufficient with moderate energy consumption by the 
discontinuous control. 
 
The rest of the paper is organised as follows. A system description of the building structure under control 
is given in Section 2. The quantised sliding mode approach is developed in Section 3. In Section 4, 
simulation results are included to demonstrate the effectiveness of the proposed approach. Finally, a 
conclusion is drawn in Section 5. 
 
2. SYSTEM DESCRIPTION 
 
Consider the structure of a 5-storey building model as shown in Fig. 1. The MR damper is mounted on a 
fixture on the ground and connected to the first floor. Each floor has lumped parameters of mass mi, 
damping ci and stiffness ki (i=1…5) respectively. The displacement of each floor, xi, with respect to the 
ground is denoted as 

Txxxxx ]    [ 54321=x , (1) 

where superscript (T) stands for vector or matrix transpose. The ground is assumed to be excited by an 
external vibration source, e.g., earthquake, in the horizontal direction given by acceleration . 0x&&

MR damperFixture
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Fig. 1. 5-storey building structure under control. 

 
The equation of motion can be written as 

0xf &&&&& MΛΓKxxCxM +=++ , (2) 

where M is the mass matrix, C is the damping matrix and K is the stiffness matrix for dimension 5-by-5, 
is the damper location vector, f is the MR damper force and is the excitation distribution vector. Γ Λ

 
One can further re-write the equation of motion in the state-space form as 

0xf &&& EBAzz ++= , (3) 
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where z is the stacked state vector, A, B and E are the system, gain matrix and disturbance matrices 
respectively and are expressed below as 
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 (5) 
The control objective is to reduce the displacements and mitigate vibrational effects due to an earthquake 
excitation. 
 
3. SLIDING MODE CONTROL 
 
Sliding mode control (SMC) is a robust control technique designed for systems subject to model 
uncertainties and external disturbances (Edwards and Spurgeon 1998). Within the SMC framework, a 
nominal system is formulated while all uncertainties and disturbances are excluded from the system. A 
sliding surface is designed such that the system response along the sliding surface 

0== Szσ  (6) 
is stable and satisfies some performance criteria determined by the sliding matrix S.  
 
The SMC output u consists of two components, namely, an equivalent control ue and a switching control 
us. That is 

se uuu += , (7) 

where ue is responsible for ensuring the system state to remain on the sliding surface (sliding phase or 
mode) and us for compensating uncertainties and disturbances such that the system state is driven towards 
the sliding surface (reaching phase). 
 
There are various methods in designing the equivalent control, for example, linear quadratic regulator 
(LQR), pole placement and others. In this work, we choose the LQR design for its satisfactory 
performances in most structural control systems found in practice. A cost function is firstly defined as 

dtT∫= QzzJ . (8) 

Here the cost matrix Q is chosen as 
)1  1  1  1  1  100  100  100  100  100(diagQ = , (9) 

giving equivalent stable system poles at 
2100.40)-  0.10,- 0.29i,  0.11- 0.81i, 0.23- 1.26i, 0.19- 1.70i,  0.156- ( ×±±±± . (10) 

In the complex plane and the LQR gain obtained as 
610]0.00 0.00, 0.00, 0.03,- 0.06, 0.47, ,4.81,-1.86 5.61,- 1.59,[ ×=F . (11) 

The equivalent control is then given by 
Fzue −= . (12) 

Following the development in (Edwards and Spurgeon 1998), the switching control can be designed via 
the application of the Lyapunov stability theorem where the candidate Lyapunov function is 

2
2
1σ=V . (13) 

In the sliding mode, it requires that 
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0== σσ &&V  for 0=σ . (14) 
That is 

)()( SBuSAzBuAzSzS +=+== σσσ &&V =0. (15) 

An equivalent control can be then obtained as 

SAzSBue
1)( −−= . (16) 

If the response on the sliding surface is designed from the LQR approach, then the feedback gain in (11) 
can be obtained as 

SASBF 1)( −= , (17) 

from which the sliding matrix S can be derived (Ha et al., 2003). 
 
Using the calculated LQR gain F, the sliding matrix is obtained as 

]26.0  36.0  11.0  16.1  00.1  44.2  95.2  69.15  139.52  25.142[ −−−−−−−=S . (18) 

Furthermore, the reaching condition requires that 

0<= σσ &&V  for 0≠σ . (19) 
With the derived equivalent control, we have 

0<= sSBuσV& . (20) 

One may choose the switching control as 

)()( 1 ση sign−−= SBus  (21) 

where 0>η  is determined by the bound on the disturbance and sign is the signum function. 
 
The system structure including the MR damper-building model and the controller is depicted in Fig. 2. 

 

MR damper

Current
control

disturbance

displacement

damper
force

Building

SMC

 
Fig. 2. System structure. 

 
The MR damper is characterised by the widely adopted Bouc-Wen model for its relative small hysteresis 
approximation error and a small set of parameters. The damper force (which is u in the control law (7)) is 
given by 

,||||||

)(
1

00
−−−=

+−+=
nn

o

zxzzxxz

zxxkxcf

&&&&

&

γβδ

α
 (22) 

where ,,,,,,, 000 γβδαxkc  and n are the damper parameters identified in an off-line routine. 
 
However, the MR damper capacity is always limited in practice, max|| Ff ≤ , or an exact damping force 
cannot be produced due to actuator uncertainties. In this work, the damping force produced by the MR 
damper is assumed to be physically limited. Moreover, damper parameters are difficult to be identified 
over the complete operation range. From the control energy point of view, it is on one hand not necessary 
to apply the full magnitude of the switching control (determined by η in (21)). On the other hand, by the 
fact that the disturbance rejection level is limited with a given actuator capacity, it is also not necessary to 
apply full actuator capacity at small values of the equivalent control, otherwise the extra actuation may 
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give rise to chattering as commonly encountered in SMC. This gives a rationale for our proposed multi-
level sliding mode control approach, described as below. 
 
The control force output from the SMC (in equ. (7)) is further processed into quantised levels according 
to the following rule, 

-Fmax/2, else      
-Fmax  then -Fmax/2 if      

else
Fmax/2  else      

Fmax   then Fmax/2  if      
0 if

=
=<

=
=>

>

f
ff

f
ff

f

 (23) 

where Fmax is the maximum damper capacity. A typical trace of the control force is depicted in Fig. 3. 
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Fig. 3. Typical quantised control force. Fig. 4. Typical MR damper hysteresis 

 
From the sketch of typical MR damper hysteresis characteristic shown in Fig. 4, and given the measured 
displacement and velocity of the first floor, a table-lookup procedure is implemented to determine the 
required current supply to the damper. 
 
4. SIMULATION 
 
The developed controller is applied to the control of the 5-storey model building installed at the 
University of Technology, Sydney. The model structure is a metal frame with add-on weights to emulate 
the mass of the floors and the damping and stiffness parameters are identified from a separate work 
(Djajakesukma et al. 2002). The structure has a fundamental natural frequency of about 2.5Hz. A scaled 
down El-Centro earthquake record, see Fig. 5, is used as the external disturbance or excitation. The 
parameters for the building are given in the Appendix. 
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Fig. 5. Earthquake excitation from El-Centro 
earthquake record (scaled down). 

Fig. 6. Control force. 

 
Two cases were simulated. Case 1 is the free-running response of the building to earthquake and the 
displacements of each floor are recorded (dotted lines). The application of the proposed controller is used 
in Case 2 with the design parameters presented in Section 3. The control force output from the controller 
is shown in Fig. 6. The displacement results are shown in Fig. 7(a) through 7(e) for the 1st floor to 5th 
floor (solid lines). It is illustrated that a significant reduction in earthquake response is achieved. 
Earthquake records from Hachinohe, Kobe and Northridge were also used in simulation. Maximum and 
RMS displacements are tabulated in Table 1. All results show unanimously a significant reduction in 
earthquake responses. 
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Fig. 7. Floor displacement, 1st to 5th floor, dotted line: no control; solid line: under proposed control. 

 
Table 1. Displacements from different earthquake records. 

El-Centro Hachinohe 
No control Controlled No control Controlled 

 
Floor 

Max(mm) RMS(mm) Max(mm) RMS(mm) Max(mm) RMS(mm) Max(mm) RMS(mm) 
1 9 2.4 5 0.6 9 3.2 8 1.2 
2 12 3.3 6 0.8 13 4.5 11 1.6 
3 14 3.9 7 0.8 15 5.3 12 1.8 
4 15 4.2 7 0.9 16 5.7 13 1.9 
5 15 4.2 7 0.9 16 5.7 14 1.8 

Kobe Northridge 
No control Controlled No control Controlled 

 
Floor 

Max(mm) RMS(mm) Max(mm) RMS(mm) Max(mm) RMS(mm) Max(mm) RMS(mm) 
1 8 2.2 7 1.0 9 2.6 8 1.2 
2 12 3.1 9 1.3 13 3.6 10 1.6 
3 14 3.6 10 1.5 15 4.3 11 1.8 
4 15 3.9 10 1.5 16 4.6 12 1.9 
5 15 3.9 11 1.6 16 4.6 12 1.9 

 
5. CONCLUSION 
 
A sliding mode controller with quantised multi-level control is proposed with application to a model 
building in order to reduce the floor displacements under quake-like excitations. The SMC equivalent 
control is designed using the LQR approach and the switching control is realised using the Lyapunov 
reaching condition. Furthermore, the effect of chattering is reduced by removing high control energies 
through quantising the control signal. This approach also relaxes the need for exhaustive parameter 
identification for the MR damper. Simulation results from applying the proposed controller to a 5-storey 
scaled down structure under quake-like ground excitation adopted from the El-Centro and other 
earthquake records have shown that the controller is effective in reducing the floor displacements. 
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APPENDIX 
 
Parameters of the 5-storey structure; mass M, damping C and stiffness K (Djajakesukma 2003). 
 

m
kN

2052227728370274
227747632836446124
280283651332956467

70446295951492869
2723446728693766

  ,
m
Ns

1251251642
125279156257
1615629912626
425162300157
2726157225

  , kg  

3700000
0330000
0033000
0003300
0000337

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−−
−−−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

--

--
---

--
---

--

KCM
 

 
REFERENCES 
 
Adhikari, R. and Yamaguchi, H., (1997) Sliding mode control of buildings with ATMD, Earthquake Engng. Dyn., 

Vol. 26, pp 409-422. 
Alvarez, L. and Jimenez, R., (2003) Semi-active control of civil structures using magnetorheological dampers, Proc. 

American Control Conf., Denver, Jun 2003, pp 1428-1433. 
Cho, H. C., Fadali, M. S., Saiidi, S. S. and Lee, K. S., (2005) Neural network active control of structures with 

earthquake excitation, Intl. J. of Control, Automation and Systems, Vol. 3, No. 2, pp 202-210. 
Djajakesukma, S. L., Samali, B. and Nguyen, H., (2002) Study of a semi-active stiffness damper under various 

earthquake inputs, Earthquake Engng. Struct. Dyn., Vol. 31, pp 1757-1776. 
Djajakesukma, S. L., (2003) Semi-active control devices for earthquake-resistant structures, PhD Thesis, University 

of Technology, Sydney. 
Dyke, S. J., Spencer, B. F. Jr., Sain, M. K. and Carlson, J. D., (1996) Modeling and control of magnetorheological 

dampers for seismic response reduction, Smart Mater. Struct., Vol 5, pp 565-575. 
Edwards, C. and Spurgeon, S. K., (1998) Sliding mode control: theory and applications, Taylor and Francis, London, 

UK. 
Ha, Q. P., Li, J., Hong, G. and Samali, B., (2001) Active structural control using dynamic output feedback sliding 

mode, Proc. 2001 Australian Conf. on Robotics and Automation, Sydney, Nov 2001, pp 20-25. 
Ha, Q. P., Trinh, H., Nguyen, H. T. and Tuan, H. D., (2003) Dynamic output feedback sliding-mode control using 

pole placement and linear functional observers, IEEE Trans. On Industrial Electronics, Vol. 50, No. 5, Oct 
2003, pp 1030-1037. 

Ikeda, Y., Sasaki, K., Sakamoto, M. and Kobori, T., (2001) Active mass driver system as the first application of 
active structure control, Earthquake Engng. Struct. Dyn., Vol. 30, pp 1575-1595. 

Jansen, L. M. and Dyke, S. J., (2000) Semiactive control strategies for MR dampers: comparative study, J. 
Engineering Mechanics, pp 795-803. 

Kim, S. B. and Yun, C. B., (2000) Sliding mode fuzzy control: theory and verification on a benchmark structure, 
Earthquake Engng. Struct. Dyn., Vol. 29, pp 1587-1608. 

Lim, C. W., Chung, T. Y. and Moon, S. J., (2003) Adaptive bang-bang control for the vibration control of structures 
under earthquakes, Earthquake Engng. Struct. Dyn., Vol. 32, pp 1977-1994. 

Lu, X. and Zhao, B., (2001) Discrete-time variable structure control of seismically excited building structures, 
Earthquake Engng. Struct. Dyn., Vol. 30, pp 853-863. 

Nishitani, A. and Inoue, Y., (2001) Overview of the application of active/semiactive control to building structures in 
Japan, Earthquake Engng. Struct. Dyn., Vol. 30, pp 1565-1574. 

Spencer, B. F. Jr. and Sain, M. K., (1997) Controlling buildings: a new frontier in feedback, IEEE Control Systems, 
Dec 1997, pp 19-35. 

Wang, A. P. and Lee, C. D., (2002) Fuzzy sliding mode control for a building structure based on genetic algorithms, 
Earthquake Engng. Struct. Dyn., Vol. 31, pp 881-895. 

Wang, D. H. and Liao, W. H., (2005) Modeling and control of magnetorheological fluid dampers using neural 
networks, Smart Mater. Struct., Vol. 14, pp 111-126. 

Yang, J. N., Wu, J. C., Agrawal, A. K. and Li, Z., (1994) Sliding mode control for seismic-excited linear and 
nonlinear civil engineering structures, Technical Report NCEER-94-0017, University of California, Dept. of 
Civil Engineering, Irvine, California. 

Zhao, B., Lu, Z., Wu, M. and Mei, Z., (2000) Sliding mode control of buildings with base-isolation hybrid protective 
systems, Earthquake Engng. Struct. Dyn., Vol. 29, pp 315-326. 

 

Page 10-7


