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Abstract
Buildings with a soft-storey are notoriously vulnerable to collapse under strong
earthquake shaking. However, a building subject to a small or moderate magnitude
earthquake has a fair chance of survival depending on the drift demand on the soft-
storey. This paper presents fragility curves which define the probability of collapse of a
soft-storey column when subject to a pre-defined drift demand. The calculation for the
fragility curves is based on the estimated shear (frictional) resistance to slip along a
major diagonal shear crack (which is the plane of weakness for collapse to occur). The
fragility curves presented can be shown to provide a more realistic representation of the
seismic vulnerability of the building than the conventional approach based simply on the
degradation in the horizontal resistance of the column.
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1. Introduction
The research described in this paper forms part of a long-term program to assess and
reduce the seismic risk and rationalizes the seismic design procedures and practices in
Australia. Soft-storey buildings are considered to be particularly vulnerable because the
rigid block at the upper levels has limited energy absorption and displacement capacity,
thus leaving the columns in the soft-storey to deflect and absorb the inelastic energy.
Collapse of the building is imminent when the energy absorption capacity or
displacement capacity of the soft-storey columns is exceeded by the energy demand or
the displacement demand.

This concept is illustrated using the ‘Capacity
Spectrum Method’ shown in Figure 1 where the
seismic demand is represented in the form of an
acceleration-displacement response spectrum
(ADRS diagram) and the structural capacity is
estimated from a non-linear push-over analysis
expressed in an acceleration-displacement
relationship (as illustrated in Wilson & Lam 2003).
The structure is considered to survive the design
earthquake if the capacity curve intersects the
demand curve and collapse if the curves do not
intersect.

The current force-based design guidelines are
founded on the concept of trading-off strength
with ductility to ensure the structure has sufficient

energy absorbing capacity. The limitation of this approach in lower seismic regions has
been examined in Lam & Chandler (2005) in which the phenomenon of displacement-
controlled behaviour was first introduced. By displacement-controlled behaviour, the
peak displacement demand on the structure is well constrained around a definitive upper
limit. Structures with seismic displacement capacity in excess of the seismic demand
could be deemed seismically safe irrespective of the horizontal strength capacity or
energy absorption capacity. Consequently, the authors have defined the ultimate drift
capacity of a soft-storey building to be associated with the condition whereby the column
can no longer resist gravity load. This definition is in contrast to the more conservative
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approach used in high seismic regions where failure is deemed to occur when the lateral
load resistance degrades by 20%.

The horizontal force-displacement behaviour of a soft-storey building can be modeled
using classical approach of integrating curvature along the column. Contributions from
deformation due to flexure, shear, yield penetration and joint rotation are then
aggregated to calculate the horizontal displacement of the column. Pilot studies have
been undertaken recently by the authors (Rodsin et al. 2004, 2005 and 2006) to predict
displacement at the limit of collapse. For a column failing in flexure, collapse occurs soon
after the rapid loss of the lateral strength capacity, in which case the displacement
capacity at collapse could be predicted reasonably accurately using existing deformation
models. In contrast, a column with widely spaced stirrups and with low aspect-ratios
(hence failing in shear or flexure-shear) shows an early degradation in lateral strength.
The rate of degradation is so gradual that a 2 - 3 % drift (at axial load ratio of
approximately 0.2) could be sustained without the gravity load carrying capacity being
compromised (Rodsin et al. 2004). This surprisingly high value of limiting drift is
attributed partly to the widening of the major shear cracks. This additional drift capacity
is given the notation: δadd. Collapse is imminent when resistance to slip at one of the
cracks has been exceeded.

This paper presents a new model for predicting the limiting drifts of non-ductile columns
which pertain to fail in shear or flexure-shear due to their low aspect-ratios and wide
stirrup spacings. The model is then extensively used to construct fragility curves based
on the estimated shear resistance to slip along a major diagonal shear crack in Section 5.

2. Column shear failure
The ultimate behaviour of a column with low aspect-ratio and poor confinement is likely
to be controlled by shear at the ultimate stage. The brittle shear failure (shear-
dominated) of a column occurs before the flexural strength has been reached while
ductile shear failure (flexural shear-dominated) occurs after plastic hinge in a column has
been developed. The limit deformation at the onset of shear failure of a column failing in
brittle shear could be accurately predicted once the column shear strength (Vini) is known
as shown in Figure 2 (curve 4).

For a ductile shear failure column, the shear strength of the column has been degraded
as the ductility increases. The shear strength has degraded due to crushing of the
compression strut of concrete in the compression zone and widening of the flexural shear
crack which reduces the capacity of shear transfer by aggregate interlock. The well-
known shear strength degradation as a function of ductility is shown in Figure 2.

The onset of shear failure of a
flexural shear-dominated column is
predicted when degraded shear
force capacity of the column
intersects with the shear force
demand as shown in curve 2 and 3.
The “ductility dependent shear
strength” relationships of columns
have been proposed by many
researchers (ie. Priestley et al. 1994
and Sezen & Moehle 2004).

Whilst the predicted shear strength
Vini using these models are agreed
in general, these models provide
significantly different results in
predicting ductility dependent shear

strength relationships. This is because the degraded concrete or the stirrup contributions
to the total shear strength cannot be directly measured or defined from the test with
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confidence (ie. the shear strength of a column cannot be measured when it does not fail
in brittle shear). Consequently, the models developed empirically based on the test
results provide only an approximate value which cannot be reliably used to estimate the
degraded shear strength (Vdeg) and the deformation at the onset of shear failure.

The model estimates degraded shear strength (Vdeg) based on the equilibrium condition
along the failure surface of a flexure-shear damage column has been developed by the
authors and is presented in Section 3. In this study, the shear strength is assumed to
linearly decrease with an increase in the displacement ductility. The values of µ1 and µ2

are conservatively assumed to be 2 and 3 respectively. The initial shear strength Vini can
be calculated using the predictive model suggested by ATC-40 1996.

The ductility dependent residual shear strength as shown in Figure 2 can be constructed
when Vini, Vdeg, µ 1 and µ2 are known. The onset of shear failure is predicted at the
intersection between the degraded shear force capacity and demand as shown in Figure
2. The shear force demand relationship (inferred from the force-displacement
relationship of the column) can be calculated using the deformation model proposed by
Rodsin et al. (2005, 2006). From this force-displacement relationship, the yield
displacement (δyu) which is corresponding to a ductility of one (µ = 1) can be determined
by extrapolating the displacement at the first yield (δy) by the moment ratio (Priestley
1996) as shown in Equation 1.

€ 

δyu =
Mn

My

δy (1)

where 

€ 

Mn= the theoretical flexural strength of the column and 

€ 

My= the flexural

strength corresponding to first yield of longitudinal bar.

At the onset of shear failure, the column may show some degradation of the lateral
strength but without the axial load carrying capacity being compromised. It was
observed from the recent experimental investigations that if no slippage occurs along the
shear failure surface, then the column may rotate by a small angle α about the
compression edge causing the crack to open slightly as shown in Figure 3a and
increasing the lateral displacement capacity of the columns. This additional drift (δadd)
capacity after the onset of shear failure is of particular interest and is discussed further in
Section 3. The total deformation at gravitational load collapse can be calculated from the
summation of the deformation at the onset of shear failure and δadd.

3. Limiting drift of a column failing in shear
The model presented herein is aimed at simplifying the mechanism of shear collapse in
order that the column drift capacity (or limiting drift) could be conveniently estimated.
The model for modeling collapse is shown schematically in Figure 3b. Collapse of the
column is deemed imminent when the shear resistance along the crack interface (Vci)
(attributed to aggregate interlock) is exceeded by the shear force demand along the
crack interface (V*ci). This shear force demand V*ci is often dominated by the axial load
component resolved in the direction of slip. The procedure to calculate V*ci, Vci and δadd

are presented in the following sections.

3.1 Calculation of shear force demand along the crack interface V*ci

The shear force applied along the crack interface V*ci can be calculated by equating the
gravity load component and forces in the stirrups resolved in the direction along the
shear failure surface as shown by Equation 2.

€ 

V *
ci = P cosθ − Fvy

hc
S
cosθ − Fsc cosθ + Fst cosθ +Vdeg sinθ (2a)
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where P = the gravity load; θ = the angle defining the orientation of the crack; Fvy = the
stirrup yield strength; hc is the width of the concrete core; and S  = the stirrup spacing;
Fsc = forces in the longitudinal reinforcement under compression Fst = forces in the
longitudinal reinforcement under tension; and Vdeg = the degraded shear force.

The angle θ can be estimated using the Modified Compression Field Theory (MCFT) or
alternatively, a conservative value of 30 degree may be assumed for typical columns
with shear span-to-depth ratio of between 2 and 3.

Forces in the longitudinal reinforcement under compression (Fsc) and tension (Fst) can be
estimated using Equation 2 which is based on the assumption that the longitudinal
reinforcements have buckled.

  and (2)

where fy = the yield strength of the longitudinal reinforcement, Asc = the total area of the
longitudinal reinforcement under compression and Ast = the total area of the longitudinal
reinforcement under tension.

Figure 3 (a) additional displacement due to rotation at critical crack, (b) free body diagram of
forces at the onset of shear failure and (c) geometry of the crack at the crack interface.

The unknown degraded shear strength (Vdeg) and the force applied normal to the shear
failure surface (N) can be calculated by solving Equations 3 and 4. Equation 3 is based on
taking moment about point H (assumed to be at middle of the compression zone) as
shown in Figure 3b. The assumption of plane strains remaining plane associated with
bending deformation enables the depth of the compression block (C) (as shown in
Figures 3b and 3c) to be estimated conveniently.

€ 

Vdeg =
1
Larm

[0.5P ⋅ (hc −C) + Fst ⋅ (hc − 0.5C) + Fsc ⋅ 0.5C − 0.125N ⋅
C
sinθ

+

0.5
Fvyhc
tan2θ ⋅ S

⋅ (hc −C)]
(3)
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The equilibrium condition of forces in the direction normal to the shear failure surface is
shown in Equation 4.

€ 

N = P sinθ +
Fvyhc
S tanθ

⋅ cosθ + Fst sinθ − Fsc sinθ −Vdeg cosθ (4)

3.2 Calculation of shear resistance of concrete along the crack interface Vci

It is assumed that after the onset of shear failure shear forces are transferred across the
crack only by aggregate interlock. The limit of shear force Vci transferred by such a
mechanism is a function of both crack width (wcr) and the normal stress on the crack
surface (σ). It is shown in Figure 4a that the crack width is not constant along the crack
interface. Therefore, the crack interface is divided into 3 regions in order that the
average normal stress and the average crack width in each region could be calculated
and used to estimate shear resistance in regions I to III. The shear resistance Vci from
the 3 regions can be calculated using Equation 5.

€ 

Vci = vcinAcrn
n= I

n= III

∑ =VciI +VcicII +VcicIII (5)

where νcin = the shear stress transfer across the crack in region n; Acrn = the area of
crack interface in region n; VciI, VciII and VciIII = the shear resistance in region I, II and III
respectively.

The shear stress νci in each region can be calculated in accordance with the relationship
between shear transmitted across the crack, the normal stress on the crack and the
crack width suggested by Vecchio & Collins (1986) as shown by Equations 6a and 6b.

€ 

vcin = vcimax n 0.18 +1.83 σ n

vcimax n
−1.01 σ n

vcimax n

 

 
 

 

 
 

2 

 
 
 

 

 
 
 ≤ vcimax n (6a)

€ 

vcimax n =
fc
/

0.3+
24wavgn

a +16

 MPa, mm (6b)

where νci max n = the maximum shear stress parameter in region n; σn = the normal stress
on the shear failure surface in region n; wavgn = the average crack width in region n.

3.3 Calculation of additional displacement δadd

The average crack width in each region wavgI, wavgII and wavgIII calculated based on the
geometry of the crack (as shown in Figure 3c) is shown in Equation 7.

€ 

wavgI = wmax
0.5hc

hc − 0.5C
, 

€ 

wavgII = wmax
0.25C

hc − 0.5C
 and 

€ 

wavgIII = 0 (7)

In the model, it is assumed that the normal force N is applied to regions II and III and
25% of concrete in the compression zone has spalled as shown in Figure 3c. The normal
stress in each region σI, σII and σIII can be calculated using Equation 8.

0=Iσ , bC
N

II ⋅
=

75.0
sinθ

σ
  and IIIII σσ =   (8)

where b = the width of the column section

The crack width wmax at axial load collapse can be obtained iteratively by matching value
of Vci (as calculated from Equations 5 – 8) with the value of V*ci (as calculated from
Equation 2).

It was observed from recent experimental investigations by the authors that if slippage
does not occur along the failure surface of the shear crack, then the part of the column



Earthquake Engineering in Australia, Canberra 24-26 November 2006

96

above the crack may rotate by a small angle α (which is approximately equivalent to
additional drift) resulting in a small crack opening as shown in Figure 3a. The additional
column deformation (δadd) associated with this limiting crack opening can be calculated
by substituting the maximum crack width wmax into Equations 9 and 10.

€ 

α =
wmax sinθ

hc
(9) 

€ 

δadd =α ⋅ Larm = wmax ⋅
sinθ
hc

Larm (10)

where Larm is the distance between the tip of the column and the rotation point H.

The calculated column deflection at the point of collapse may include the additional
displacement δadd associated with the limiting crack opening. It is noted that although the
limiting angle of crack opening (α) at the threshold of collapse is generally very small,
the associated increase in the displacement capacity of the column can be significant
depending on the column geometry.

4. Experimental results
Half-scaled cantilever reinforced concrete column specimens with a similar cross-section
of 160×200 mm and aspect ratios of 2.75 (S1) and 2.25 (S2) were tested to study their
cyclic force-deformation behaviour under high shear force demand. The gravitational load
carrying capacity of the column and mechanism of failure at collapse were studied. The
innovative Vision Metrology System (VMS) was used to measure deformation of the
columns including deformation of the area surrounding the shear cracks. The 3D
displacement of the VMS targets attached to the surface of the columns was monitored
throughout the test. Full details of the test can be found in Rodsin et al. (2004).

To validate the proposed model described in Section 3, data from the VMS targets
located near the major shear crack have been analysed. The limiting angle of crack
opening (α) and the additional displacement (δadd) at the threshold of collapse were
recorded for comparison with estimates obtained from the model (refer Table 1). The
comparisons show general agreement between the experimental measurements and the
analytical estimates. It should be noted that at this threshold of collapse, two
displacement cycles have been applied to ascertain that the columns can sustain the
cyclic loading without axial load carrying capacity being compromised.

Table 1 Comparison of experimental versus predicted crack rotation along the major crack plane,
additional displacement (δadd) and total displacement at incipient collapse.

Column Length Crack rotation
(α)

Additional disp. (δadd) Total disp. (δ)

mm Radian (x10-3) mm (%drift) mm (%drift)
Exp. Model Exp. Model Exp. Model

S1 550 5.8 6.6 2.9(0.5) 3.3(0.6) 21.0(3.8) 17.0(3.1)
S2 450 7.0 5.2 2.8(0.62) 2.1(0.47) 11.0(2.4) 9.3(2.1)

5. Fragility curve of soft-storey column failing in shear
The major uncertainties associated with additional displacement calculation are material
properties, load conditions, the shear crack angle (θ) and the shear resistance along the
crack surface. For the test column specimens, the first three parameters can be
accurately measured with small variations so that they do not significantly affect the
accuracy of the test results. In contrast, the mechanism of shear transfer across the
crack is more complicated and the experimental data often show some degrees of scatter
(as shown in Figure 4). Therefore, the fragility curves for a soft-storey column in this
study are constructed based on the uncertainties associated with shear resistance to slip
along a major diagonal shear crack. Fragility curves presented in this paper was based
on laboratory controlled condition in which the values of νcimax and σ are predetermined.
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These fragility curves could be further developed to incorporate variability in material
properties, workmanship and load conditions encountered in practice.

The relationship between the measured shear stress transmitted across the crack and the
compressive stress on the crack is shown in Figure 4. A non-linear regression analysis
has been used to estimate the shear stress resistance νci  from Equation 6. The standard
error (S.E.) was found to be 0.06. Although there is a limited number of data generated

for each 

€ 

σ
vcimax

, a considerable number of data covers a wide range of 

€ 

σ
vcimax

 values. The

statistical parameters in a regression analysis could be reliably estimated when there are
sufficient data within the range of interest.

A probability distribution of test data associated
with crushing and spalling of materials usually
follows a Gumbel distribution. However, under

low 

€ 

σ
vcimax

, only slippage along the crack

interface (without material crushing) is
expected. Therefore, a Gumbel distribution may
not be applicable for modeling probability
distribution for the whole range of data. For the
sake of simplicity, it is assumed that the errors
are normally distributed and there are about 2
chances in 3 that the data lies within the
forecast equation (Equation 6) plus and minus
one standard error. Therefore, the upper and
lower bound (plus and minus 3 S.E.) plotted in
Figure 4 show that there are 99.75% of data
points lying within these two limits.

The fragility curve in Figure 5a is defined as a probability of gravity load collapse of shear
damage columns when subject to a pre-defined additional displacement (δadd) or a
percentage drift. The probability of failure is calculated using a deterministic equation
(Equation 6) to determine crack opening angle (α) (approximately equal to additional
drift angle) at 50% chance of failure. A series of standard errors (S.E.) have been used
to modify Equation 6 in order that other α values at a different probability of failure could
be estimated. (ie. +1S.E. and -1S.E. associated with 83% and 17% probability of failure
respectively).

The fragility curves of a soft-storey building subject to a pre-defined displacement
demand are shown in Figure 5b. To construct these fragility curves, the total drift is
calculated by simply adding the drift at the onset of shear failure (the method of
predicting drift at the onset of shear failure was suggested in Section 2) to the additional
drift calculated in Figure 5a. This total drift is subsequently used to calculate the total
displacement of a soft-storey column based on a given column height.
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It was assumed that load conditions and geometry of an example column supporting
soft-storey are similar to those of the column S2. The height of the first storey column is
assumed to be 2.5 m (shear span = 1.25m). Therefore, the column specimen S2 was
scaled from the corresponding prototype using a geometric scale factor of approximately
0.4 (0.45/1.25).

The displacement demand in Figure 5b is then presented in form of the peak ground
velocity (PGV) as shown in Figures 6a-6c. The simplified response spectrum model for
rock site in Australia as proposed by Wilson and Lam (2003) was used to estimate a
displacement demand from a given PGV. Subsequently, the displacement demand was
amplified using soil amplification factors S of 1.3, 1.8 and 3.0 for soil class B, C and D
sites respectively. The corner period T2 is conservatively assumed to be 1.5 secs.

Figure 6 Fragility curves of a soft-storey column (the first storey height = 2.5m) for different shear
crack angles under axial load ratio = 0.2.

From Figures 6a-6c, the soft-storey building founded on rock (class B) and shallow soil
(class C) sites seems to be seismically safe (a notional PGV = 60 mm/sec). However, on
the soft soil site (class D), this building may collapse when the PGV is greater than 40
mm/sec and is seismically safe when the PGV is lower than 35 mm/sec.

6. Conclusions
The concept of displacement-controlled behaviour has been introduced in this paper
whereby the ultimate drift limit is based on the condition when gravity loading can no
longer be supported by the damaged column. A model for predicting the deformation
behaviour of a column at the limit of collapse has been presented. The model is intended
for columns with low aspect-ratio and hence failing in shear or flexure-shear. The
predictions calculated from the proposed models show good agreement with
experimental results obtained from tests performed by the authors. The model has been
further used to construct fragility curves which define the probability of collapse of a soft-
storey column when subject to a pre-defined drift demand and a peak ground velocity
based on different soil sites. The development of the gravity-collapse model for
estimating the displacement capacity of soft-storey columns forms an important part of
the displacement-based methodology for assessing the seismic performance of building
structures in regions of low and moderate seismicity.
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