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ABSTRACT 
 

In Australia, separate standards have been developed to provide guidance on the 
estimation of dead load, live load, wind load, snow load and seismic load. All but the 
Standards for Seismic Actions and part of the standard for wind loading are based on 
static conditions. There is little written on how transient actions, and impact actions in 
particular, are to be estimated. This paper explains how the response spectrum model 
stipulated by the current (new) edition of the Australian Standard for Seismic Actions can 
be used for impact actions which can include the collision of a vehicle on a barrier or on 
the support of a (bridge or building) structure. The impact action of a fallen object, or a 
projectile, on a structural element can also be estimated using the response spectrum 
model which was originally developed for estimating seismic actions. It is proposed that 
in the future a range of transient actions in extreme conditions can be covered by the 
same standard. This paper is presented in a way that is intelligible to the average 
practicing structural engineer. Prior knowledge of impact dynamics is not required. 
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1.  INTRODUCTION 
 

Impact action is the second most common form of loading on structures next to 
gravity loading. Yet, it is difficult to find literature references or regulatory documents 
that provide general guidance to practicing engineers on the assessment of the effects of 
impact actions on structures. No part of the AS1170 loading standard series makes 
explicit references to impact actions.  
 
With gravity dead loads, engineers would only need to have guidance on the density of 
the material and the partial safety factors. The training of engineers on statics and 
structural analysis would enable the gravity loads to be translated into internal forces for 
comparison with the strength of the structure. However, few engineers have the skills of 
analysing loading which involves the dropping of an object or other forms of impact. 
When specialized software is used to undertake the analysis, few engineers have the skills 
of evaluating and interpreting the computer generated results.  
 
Isolated clauses can be found in bridge design standards on the design collision force for 
vehicular parapets or bridge supports that are situated close to a highway or railway track. 
Guidances on the berthing and mooring forces for the design of piers and dolphins can 
also be found. However, these clauses are typically prescriptive in nature and address 
specific types of loading without necessarily stating the basis of the recommendations 
and assumptions made. Engineers would not be able to make their own judgment on how 
to modify the provisions when conditions have changed. For example, few engineers 
would know how to make adjustment to the design collision force on a bridge pier to 
allow for an increase in the tonnage and design speed of vehicles. This has much to do 
with the ways civil engineers are educated. Whilst the teaching of statical equilibrium and 
free-body diagrams is the usual theme in the early (technical) part of a civil engineering 
degree program, the teaching of dynamics has been mostly in the context of analyzing 
mechanical/electrical systems. It is rare to see references being made to the basic 
principles of momentum transfer in the teaching of structural analysis.  Ironically, most 
live loads experienced by a structure exposed to the environment are characterized by the 
motion of objects which make contact with the structure thus imposing a hazard. 
 
The earthquake loading model adopted by the new standard for seismic actions for 
Australia (AS1170.4 – 2007) offers the opportunity of closing the knowledge gap. The 
response spectrum is of the tri-linear form and is constrained by parameters associated 
with the three elements of ground motion: acceleration, velocity and displacement as 
illustrated in Section 2 of the paper.  It is demonstrated in this paper that the response 
spectrum calculated from a pulse generated by collision can also be represented by the 
same tri-linear model (refer Section 3). Results of idealized impact analyses are then 
presented in the rest of the paper for the development of a generalized model for impact 
actions. Finally, a unified model that can be used for representing both seismic actions 
and impact actions is presented. 
 



 
2. THE CONSTRUCT OF THE EARTHQUAKE LOADING MODEL 

 
The natural period dependable earthquake loading (response spectrum) model 

stipulated by the new standard for seismic actions for Australia (AS1170.4 – 2007) is 
made up of three piecewise continuous functions which can be written in the following 
form : 
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 where  RSA  is the response spectral acceleration (or base shear of a sdof system 

normalized with respect to its mass), T  is the natural period of the sdof system,  
T1  and  T2   are the first and second corner periods respectively, and C1, C2 and C3 

are coefficients that are dependent on the seismic hazard factor  (Z) and the 
subsoil classification.  

 
For a hazard factor  (Z) of 0.08, which is the case for Melbourne, Sydney and Canberra 
for a return period of 500 years, the values of the coefficients C1, C2 and C3 for subsoil 
class B (rock) and D (soft soil) are summarized in Table 1. 

 
Table 1   Coefficient values for hazard factor of 0.08 

Subsoil classification C1 C2 C3 
B 
D 

0.24 
0.30 

0.069 
0.242 

0.104 
0.363 

 
The rationale behind this earthquake loading (response spectrum) model is much easier to 
comprehend if the response spectrum is presented in multiple formats. Response spectral 
co-ordinates can be expressed in terms of :  (i) acceleration or normalized base shear  
(which engineers are most familiar with), (ii) velocity or normalized kinetic energy and 
(iii) displacement or relative drift demand. Examples of response spectra expressed in 
different formats are shown in Figures 1a – 1c. In the acceleration-displacement action 
diagram of Figure 1d, the displacement (or relative drift demand) is plotted against the 
acceleration (or normalized base shear). The transformations between acceleration, 
velocity and displacement are defined by the following expressions based on standard 
structural dynamics principles : 
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The highest level in the acceleration response spectrum (Figure 1a) represents the highest 
acceleration demand (or highest normalized base shear) that a sdof system can be 
subjected. The highest level in the velocity response spectrum (Figure 1b) represents the 
highest velocity that can be developed in a sdof system during the course of the dynamic 
response. Likewise, the highest level in the displacement response spectrum (Figure 1c) 
represents the maximum displacement or relative drift demand that can be experienced by 
a sdof system within the natural period range of interests.  
 
As is shown in Figures 1a – 1c, equation (1a) represents the constant (maximum) 
acceleration  segment  of the response spectrum,  equation (2a) represents the constant 
velocity segment and equation (3a) represents the constant displacement segment. 
Consequently, sdof systems subject to earthquake excitations can be described as 
possessing acceleration, velocity or displacement controlled conditions depending on the 
region of the response spectrum which the natural period of the structure falls within. In 
the velocity response spectrum of Figure 1b which is shown in logarithmic scale, the 
three segments of the idealized spectrum are made of three straight lines, and hence the 
term tri-linear model. 
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(a) Acceleration response spectrum  (b) Velocity response spectrum 
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(c) Displacement response spectrum  (d) Acceleration–Displacement Diagram 

 
Figure 1  Response spectrum model of the Standard for Seismic Actions  

AS1170.4 (2007) 



 
The acceleration-displacement action diagram of Figure 1d also presents very clearly the 
three segments of the response spectrum: the flat (horizontal) segment of constant 
acceleration, the hyperbolic segment of constant velocity and the vertical segment of 
constant displacement. The three segments are separated by radial (broken) lines 
representing the corner periods :  T1  and T2. Equation 3 which defines the hyperbolic 
segment was derived by substituting equation 2b into equation 2c (in order that variable T 
can be eliminated) and by holding RSV constant at the value of Vmax. 
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The highest acceleration level (RSAmax or Amax ) in units of g’s is taken by AS1170.4 
(2007) as 3.Z.Fa where Fa (site factor) is 1.0 for rock and 1.25 for other subsoil classes. 
The highest velocity level (RSVmax or Vmax) is taken as 1.8 times the peak ground velocity 
(PGV) on a rock site times Fv where PGV (rock)  in units of mm/s is  taken as  750.Z.  and 
Fv is 1.0 for rock and 3.5 for subsoil class D. The highest displacement (RSDmax  or  Dmax)  
is then  Vmax  times  T2/2π  where T2 is taken as 1.5s for all subsoil classes in Australia. 
The coefficient values listed in Table 1 were calculated by substituting the values of  
Amax, Vmax  and Dmax  as defined above into equations 2a – 2c . 

In summary, the construction of the tri-linear earthquake loading model of AS1170.4 
(2007) is based on the following : 

(i) Amax = 3.Z. Fa 

(ii)  Vmax = 1.8 (750.Z) Fv 

(iii)  Dmax= Vmax (T2/2π) where T2 = 1.5 s 

(iv) The transformation relationships of equations 2a – 2c and equation 3. 
 
 

3. GENERALISATION OF MODEL FOR PULSE TYPE LOADING 
       

The earthquake loading model described in Section 2 was originally developed 
from regression analysis of response spectra calculated from both the real (recorded) and 
synthetic (computer generated) accelerograms for sites of different subsoil classes. In this 
section, the behaviour of the response spectrum for a single arbitrary pulse that is 
generated by a simple, and abrupt, translational motion of the ground is first studied. The 
second type of pulse to be studied is that delivered by the impact of a projectile on a 
lumped mass sdof system structure. The first type of pulse is denoted herein as “ground 
pulse” and the second type as “collision pulse”. 

 
First, consider that the ground translate by some 25 mm in approximately 1 second. The 
acceleration and velocity time-history of the ground motion, as shown in Figures 2a and 



2b respectively, indicates a peak ground acceleration of 0.15 g and a peak ground 
velocity of 50 mm/s. Integration of the ground velocity function gives a permanent 
ground displacement in the order of 20 – 25 mm.  
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(a) Acceleration time-history 
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(b) Calculated velocity time-history 

Figure 2  An arbitrary single ground pulse 
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(a) Acceleration response spectrum  (b) Velocity response spectrum 
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(c) Displacement response spectrum  (d) Acceleration–Displacement Diagram 

Figure 3  Response spectrum model of the arbitrary single ground pulse 



 
The response spectra calculated from the time-history based on 5% critical damping are 
shown in the different formats in Figures 3a – 3d. Clearly, the response spectra are well 
represented by the tri-linear model in a manner similar to that for earthquake loading. The 
three regions associated with acceleration, velocity and displacement controlled 
behaviour can be seen and they are separated by corner periods (T1 and T2) of 1 and 2 
seconds respectively. It can be shown that the value of T1 can be made lower by the 
introduction of higher frequency excitations (ie. noise). The value of T2  can be made to 
change by varying the pulse duration. The value of Amax  as shown in Figure 3a is not 3 
times the peak ground acceleration but is of similar order of magnitude. The  value of  
Vmax (65 mm/s) as shown in Figure 3b  is about 1.3 times the PGV (and not 1.8 PGV as in 
the case of the earthquake loading model). The  value of  Dmax ( 22 mm) as shown in 
Figure 3c  is consistent with the amplitude of the ground translation.   
 
In summary, the response spectra calculated from the arbitrary ground pulse can be 
matched by the tri-linear model (although the corner periods and the ground motion 
multipliers are not the same as that defined by AS1170.4 – 2007).  
 
Next, consider an arbitrary collision pulse. The acceleration values were calculated from 
the contact force generated by the impact and then normalized with respect to the mass of 
the target structure. The sinusoidal nature of the acceleration pulse as shown in Figure 4a 
is indicative of the elastic nature of the impact. Integration of the acceleration time-
history gives the velocity time-history of Figure 4b. Unlike a ground pulse, a collision 
pulses has non-zero terminal velocity. In the illustrated example, the terminal velocity is 
about 60 - 65 mm/s. In reality, the duration of a pulse delivered by an impact of a solid 
projectile on a structure is typically of the order of milliseconds or tens of milliseconds. 
In the hypothetical case illustrated in Figure 4, an unusually long pulse duration of 0.5 s 
was chosen in order that direct comparison of the response spectra calculated from the 
collision pulse and the ground pulse could be made.  
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(a) Acceleration time-history 
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(b) Calculated velocity time-history 

Figure 4  An arbitrary collision pulse 
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(a) Acceleration response spectrum  (b) Velocity response spectrum 
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(c) Displacement response spectrum  (d) Acceleration–Displacement Diagram 

Figure 5  Response spectrum model of the arbitrary collision pulse 
 

The overall appearance of the response spectra calculated from the collision pulse is 
generally similar to that of the ground pulse as shown in Figures 5a – 5d. Interestingly, 
the tri-linear model can be made to match with the response spectra for both types of 
pulses (despite the very different manner in which the pulses have been generated). The 
value of  Vmax  is consistent with the value of the terminal velocity (60 – 65 mm/s) which 
can be calculated by integrating the pulse acceleration with respect to time (Figure 4b).   
 
Comparison of the response spectra calculated for the ground pulse and the collision 
pulse reveals some interesting similarities (Figures 6a – 6d). However, the response 
spectra associated with the collision pulse does not have the displacement controlled 
segment. This is because the value of T2  is equal to infinity or higher than the natural 
period range of interest (ie. T2 > 5 s). 
 
With both types of pulses, the hyperbolic segment representing velocity controlled 
conditions in the acceleration-displacement action diagram can be constructed by joining 



the apices of triangles of equal areas as shown in Figure 7. This feature of the action 
diagram can be explained by making reference to equation 3. It can be inferred from this 
equation that the area of a triangle representing elastic energy absorption (ie. ½ force x 
displacement = M.RSA x RSD) can  be equated to the kinetic energy demand of the target 
structure that has been excited into motion (ie. ½ M.Vmax

2 ). Thus, the hyperbolic 
segment of the action diagram can be constructed by drawing triangles of areas that are 
equated to the maximum kinetic energy delivered by the impact. The horizontal (flat) 
segment of the action diagram (Figure 7) represents another phenomenon to be explained 
later in the paper. 
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(c) Displacement response spectrum  (d) Acceleration–Displacement Diagram 

Figure 6  Response spectrum comparison of the ground and collision pulses 
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Figure 7  Basic construct of Acceleration-Displacement Action Diagram 



The first corner period (T1) which separates the flat and hyperbolic segments of the action 
diagram (as shown in Figure 7) is controlled by the duration of the collision pulse. 
Intuitively, the harder the impacting object, the shorter the pulse duration, the lower the 
value of T1. In the extreme case of a very hard impacting object,  T1  tends to zero. In 
such a case, acceleration controlled conditions do not exist and the response spectrum is 
controlled fully by velocity. The acceleration (force) and the relative drift demand of the 
target structure can be determined by the graphical construction technique illustrated in 
Figure 7 once the value of  V  is known.  The velocity developed in the target structure 
(V)  is not to be confused with the velocity of the projectile (Vo) before it makes contact 
with the structure. The calculation of  V  from  Vo  is based on the principles of 
conservation of momentum as explained in Section 4. 

 
4. BASIC MODEL FOR IMPACT ACTIONS (HARD PROJECTILES) 

 
As a hard projectile of mass  m  and travelling at a velocity of  Vo   strikes a sdof 

lumped mass system (the “target”) of Mass  M  the momentum transfer of the impact  can 
be expressed as follows : 
 

( ) ( )VMmVm o +=+υ1    or   
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where   ν (<1.0) is the coefficient of restitution which is dependent on the nature 
of the impact. 

 
In situations where the mass of the projectile is an order of magnitude smaller than that of 
the target (and can be neglected) and there is no rebound of the projectile from the target, 
equation 4a can be simplified into equation 4b. 
 

 oV
M

m
V .=          (4b) 

 
Once the velocity of the target structure (V) has been calculated using equation 4a or 4b, 
the hyperbolic segment of the acceleration-displacement action diagram can be 
constructed using equation 3 or the graphical method illustrated in Figure 7. The 
normalized force – displacement (or acceleration – displacement) relationship of the 
target structure is then drawn to intercept with the constructed hyperbola. 
 
The use of the Acceleration-Displacement Action Diagram is demonstrated herein with 
the example of a projectile (which has a mass (m) of 10 kg) impacting on a target 
structure, of 100 kg effective mass, and with an incipient velocity (Vo) of 10 m/s 
immediately prior to making contact with the structure. Principles of conservation of 
momentum are employed to estimate the response velocity of the target immediately 
following the impact. Assuming perfect rebound on impact (i.e. ν = 1.0) V is found to be 
equal to 1.8 m/s  from equation 4a. Equation 3 could then be used to construct the 
hyperbolic segment of the action diagram as shown in Figure 8a. In this example, linear 
elastic behaviour is assumed of the target structure which possesses a natural period of T 
= 0.28 s. The (linear) capacity function representing the response behaviour of the 



structure, which has a gradient (A/∆) equal to (2π/T)2 intercepts with the hyperbolic 
(demand) function at an acceleration (A) of approximately 40 m/sec2 and a displacement 
(∆) of 0.08 m. The reaction force is accordingly estimated to be about 4000 N (= 40 
m/sec2 x 100 kg). 
 
Whilst the use of the action diagram will provide accurate results for linearly elastic sdof 
lumped mass systems, the technique can be extended to cases of non-linear force-
displacement relationships as shown in Figure 8b. The use of the action diagram for 
solving systems experiencing inelastic response behaviour based on linearisation is 
widely practiced in earthquake engineering. 
 
The important assumption with this method of calculation is that the impacting object is 
non-deformable in order that the transfer of momentum from the projectile to the target 
structure occurs instantaneously. The use of the  action diagram based on this assumption 
would give a conservative estimate of the impact action, when in reality a finite amount 
of time would be required for the transfer of momentum to take place from the 
(deformable) impacting object to the target structure (which is also deformable). If the 
effects of the softness of the projectile is to be taken into account, two-degree-of-freedom 
modelling has to be adopted, as discussed in Section 5. 
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Figure 8  Acceleration-Displacement Action Diagram for hard impact 
 
 

5. GENERALISED MODEL FOR IMPACT ACTIONS (HARD AND 
SOFT PROJECTILES) 

 
 A schematic representation of the two-degree-of-freedom (2DOF) system model 
is shown in Figure 9. With the 2DOF model, the impacting object and the target structure 
is each represented by a single-degree-of-freedom system which is characterised by mass, 
m and M, and spring stiffness, k and K, respectively. The stiffness k associated with the 
impacting object is to model the deformation of the object as well as the indentation of 
the object into the surface of the target structure. The value of  k  can be calculated by 
dividing the contact force by the displacement of the centre of mass of the impacting 



object. Thus, a lower value of k refers to a softer impacting object. The natural period of 
the object (Tm) which controls the duration of application of the contact force can be 
estimated using equation 5 which is to be read in conjunction with Figure 9. 
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m F
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m
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δ
ππ=

    (5)   

 
It is evident in equation 5 that the softer the impacting object (the lower the value of  k) 
the longer the duration of contact and hence the longer the delay in the full transfer of 
momentum from the impacting object onto the target structure. Details of the 
computational algorithm for implementation of the 2DOF analysis on EXCEL can be 
found in Lam & Tsang (2008). 
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Figure 9. Two-degree-of-freedom model. 
 
Analyses based on the example cited in Section 4 have been undertaken. As before, the m 
= 10 kg object is considered to impact the M = 100 kg target with a velocity (Vo) of 10 
m/s.  Modal damping of the system is assumed to be 0.5 %.  Simulations of impact using 
the 2DOF model can be used to demonstrate the important phenomenon of delayed 
response of the target which is demonstrated in Figure 10. The simulation was based on 
impact parameters: k = 25,000 N/m (which is translated into Tm = 

skm  12.025000/1022 / == ππ ). The value of Tm is significantly lower than the 
natural period of the target structure (T = 0.28 s). At the instance when maximum contact 
force (of approximately 10000 N as shown in Figure 11)  is developed on impact, only a 
very small reaction force is initially developed in the support to the target structure as 
shown in Figure 10 (at t = 0.02s). The compression of the spring which is connected to 
the structure occurs much later (at 0.09s). A maximum reaction force (of approximately 
4000N) was eventually developed at 0.1s. The time-histories of the development of the 
contact force and reaction force are shown in Figure 11. The time-history trace of the 
contact force is sinusoidal in form and is consistent with that shown in Figure 4a. The 
much attenuated reaction force of the target and the delayed response is clearly shown.  
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 Figure 10 Simulation of impact    Figure 11 Time-histories of generated forces  
 
A large number of analyses similar to the one shown above were undertaken with varying 
properties of both the projectile and the target structure. The maximum reaction force and 
the displacement of the target was then recorded from each of the analyses for 
comparison with results obtained from the simplified method introduced in Section 4. 
Both sets of results are presented in Figure 12 with different legends. The solid line 
represents estimates from the simplified method whereas the solid circular symbols 
represent estimates from the 2dof analyses. Good agreement between the two sets of 
results are generally observed with cases where the natural period of the structure was 
significantly higher than that of the impacting projectile (when T >> Tm). However, 
predictions by the simplified method is shown to be very conservative when the target 
structure is of a lower natural period (when T < Tm). The conservatism can be explained 
by the significant delays in the momentum transfer and the effects of such delay could 
not be accounted for by the simplified method. It is observed from each action diagram of 
Figure 12 that the reaction forces calculated from the 2dof analyses cannot exceed a 
certain limit. This upper limit is observed to be very close to the point where the radial 
line associated with Tm intercepts with the hyperbola (refer hollow circular symbol in the 
figure).  Clearly, the acceleration level of this upper limit decreases with increasing value 
of  Tm. A generalised model for impact actions is proposed herein based on these 
observations.  
 
It is shown in the generalised model (Figure 13) that estimates of the force and 
displacement demand of the target structure be based on the intercept of the capacity line 
with the hyperbola defined by equation 3  when  T > Tm. With lower values of T, the 
hyperbolic segment is replaced by a flat segment which has F = Fpeak where  Fpeak is 
obtained by intercepting the radial line for Tm  with the hyperbola. Results from analyses 
of the 2dof models could be presented in terms of the acceleration (normalized force) 
demand as shown in Figure 14a. It is shown clearly in the figure that the reaction force of 
the target structure is very sensitive to the value of Tm.  The response spectra are shown to 
have very consistent characteristics when the response spectral ordinates have been made 
dimensionless as shown in Figure 14b. In the dimensionless presentation, the force ratio 
is the reaction force of the target structure divided by the contact force and the natural 
period ratio is T divided by Tm .  An interesting, and significant, observation to make of 
Figure 14b is that it is not dissimilar to a response spectrum model for earthquake 
loading. 
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  (a) Tm = 0.12s    (b) Tm = 0.18s 
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(b) Tm = 0.24s    (c) Tm = 0.36s 
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Figure 12 Comparison of results from 2DOF model and Acceleration-Displacement Action Diagram 

(m=10 kg   M=100kg   Vo=10m/sec   ν=1.0) 
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Figure 13 Action diagram shown the generalised model for impact 

 
Results could also be presented in terms of the displacement demand as opposed to the 
acceleration (force) demand. Such information could be presented in the very compact 
format of a displacement response spectrum which shows the displacement demand 
behaviour associated with different values of Tm (refer Fig. 15). The displacement 
demand of hard objects (which are characterised by low values of  Tm) pertains to the 
linear relationship of equation 5 which provides a conservative benchmark for estimating 
the displacement demand of the target structure. 
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Figure 14 Acceleration response spectra from 2DOF analysis 
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Figure 15 Displacement demand of target from 2DOF analysis 
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6. SUMMARY AND CLOSING REMARKS 

 
A proposed generalized model for impact actions has been presented along with the 

newly implemented model for earthquake actions of AS1170.4 (2007). The two models 
are summarized in Table 2 which is to be read in conjunction with the schematic diagram 
of Figure 16.  
 
The generalized model enables the reaction force of a lumped mass sdof system to be 
estimated reasonably accurately without the need to resort to the use of a specialized 
software. The generalized model can be applied readily to situations of an impacting 
object striking the edge of a slab or the soffit of a bridge deck. Solutions can be 
conveniently obtained for target structures which weigh much less than the projectile. In 
situations where an object is striking a beam, a column, or a canopy, the effective mass 
surrounding the point of contact has to be determined. It is common practice to take the 
effective mass of impact to be equal to the effective modal mass of the fundamental mode 
of vibration of the element (which can be a beam or a slab). For example, the effective 
mass of a simply supported reinforced concrete beam has been assumed to be 4/5 of the 
total mass of the beam in the expression proposed by Simms (1945) for the calculation of 
the energy absorption of the beam expressed as a fraction of the kinetic energy of the 
impacting object. Methods of calculating the effective modal mass of a member, or a 
structure, is explained in standard structural dynamics text books.  It is cautioned herein 
that neglecting the contributions to higher modes of vibration can result in significant 
modelling errors. Examples of illustration of this can be found in Lam et al. (2008). 
 

Table 2  Summary of unified model for earthquake and impact actions 
Response 
parameters 

Model for seismic actions 
AS1170.4 (2007) 

Generalised model for impact 
(this paper) 
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Figure  16  Unified model for earthquake    
  and impact actions 



The unified model presented in this paper is a viable starting point for civil engineers to 
broaden their perspective on how structures respond to dynamic actions that are associated 
with hazards such as earthquakes, explosions and other forms of impact loading, by 
considering the acceleration, velocity and displacement system demands. Design criteria and 
values of factors to be used in design could be developed using this model. 
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