
1. INTRODUCTION 
 
Earthquake ground motion time histories at different locations on the ground surface of 
an engineering site inevitably vary owing to wave propagation effects. Spatially varying 
ground motion affects structural responses, especially large space structures. It might 
excite some of structural vibration modes that would not be excited by uniform ground 
motions, such as torsional modes of symmetric structures. It might also cause relative 
responses between adjacent structures that lead to pounding or unseating of bridge 
decks. In some cases, ground motion spatial variation effect might govern the structural 
response and consequently determine the structural damage. To predict structural 
responses more realistically it is therefore important to accurately model ground motion 
spatial variations.    

 There are few ground motion spatial variation models available in the literature [e.g. 
Sobczyk 1991, Bolt et al 1982, Abrahamson 1985, Harichandran and Vanmarke 1984, 
Hao 1989]. Except for the theoretical model derived by Sobczyk [1991], which was 
based on analysis of stochastic wave propagation in a homogeneous random field, all 
the other models were derived from recorded strong ground motions in dense arrays, 
such as the SMART-1 array in Taiwan. All the other models are one-dimensional with 
the loss of coherency depending on the separation distance, with the exception of the 
model derived by Hao [1989], which is a two dimensional model, i.e. the coherency loss 
between ground motions at various points on the ground surface depends on not only 
the separation distance, but also on the wave propagation direction. Because of the 
constraint of the array configuration, both the theoretical and empirical ground motion 
spatial variation relations are valid only to sites with flat surface and similar geological 
conditions. In reality, supports of extended structures could rest on sites of different 
conditions. One bridge pier could be on rock outcrop while another on soft soil. There is 
no spatial variation model in the literature to represent such ground motions.   

This study presents results of theoretical derivations of ground motion spatial 
variation on a site with uneven surface and different site conditions, in particular, soil 
and rock. Wave propagation theory is used in the derivation. Site amplification and 
attenuation owing to damping of the site is considered. The ground motions at bedrock 
are assumed to have the same intensity but vary spatially. Spectrums and loss of 
coherency of motions on ground surface are derived. It should be noted that in the 
derivation the site is assumed to be homogeneous and no loss of coherency is induced 
due to wave propagation through the site.        
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2. THEORETICAL DERIVATIONS 
 
Figure 1 illustrates the schematic view of the site under consideration, in which ρ and v 
represent density and shear wave velocity of the site material, and ξ is the damping ratio. 
Assume the seismic wave propagates into the site with an incident angle α, and then 
propagates vertically to ground surface. If the horizontal separation distance between 
points A’ and B’ at base rock, or A and B on ground surface is d, the time lag between 
the waves at A’ and B’ is then τR=dcosα/vR, in which vR is the shear wave velocity of 
the base rock.      

Let ground motion at A’ and B’, uA’(t) and uB’(t) have the same intensity, i.e. their 
power spectral density function SuA’(ω)=SuB’(ω)=SR(ω). This assumption is valid 
because the separation distance d is much smaller than the epicentral distance. However, 
they are not perfectly cross-correlated owing to source mechanism and wave 
propagation effect in inhomogeneous path. The loss of correlation is represented by the 
theoretical loss of coherency function [Sobczyk 1991] 
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where ω is circular frequency and β is a coefficient depending on the level of coherency 
loss. The cross power spectral density function between uA’(t) and uB’(t) then can be 
expressed as  
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Figure 1 Schematic view of the site under consideration 
 

Using wave propagation theory presented in [Aki and Richards 1980], Safak [1995] 
derived the transfer function for a shear wave propagating in a horizontal layer as 
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where ‘j’ represents A or B in this paper, Uj(iω) is the Fourier transform of the uj(t), ξj is 
the damping ratio accounting for energy dissipation owing to wave propagation, and 
ξj=1/4Q, in which Q is the quality factor [Knopoff 1964]; τj=hj/vj is the wave 
propagation time from point j’ at base rock to point j on ground surface, and rj is the 
reflection coefficient for upgoing waves,  
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In engineering application, usually the outcrop motion on rock surface is available, 
instead of the base rock motion. If the outcrop motion is used, the constant 2 in 
Equation (3), which is a measure of free surface reflection, in the transfer function can 
be dropped. Then it has 
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The motion on ground surface is therefore 
)()()( ' ωωω iUiHiU AAA =                       (6) 

and similarly 
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The power spectral density functions of the motion on ground surface are 
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and  
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in which T is the duration of the ground motion and superscript ‘*’ represents complex 
conjugate. The cross power spectral density function of ground motion at A and B is 
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The coherency loss between ground motions at points A and B is  
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where θA(ω) and θB(ω) are the phase angles of the transfer function HA(iω) and HB(iω), 
respectively. 
 
2.1 Special Case 1: hb=0.0 m 

 
In that case, rB=1.0, ξB=0.0 and τB=0.0. Substitute these into the transfer function (5), it 
has HB(iω)=1.0, or UB(iω)=UB’(iω). Then SuB(ω)=SR(ω), θB(ω)=0 and 
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2.2 Special Case 2: ha=hb, vA=vB, ρA=ρB  
 
This case corresponds to a uniform horizontal layer above the base rock. From 
Equations (4) and (5), it can be derived that )()()()( 2 ωωωω RAuBuA SiHSS == , 
θA(ω)=θB(ω), and )()( '' ωγωγ ii BAAB = . 
 
2.3 Special Case 3: ha=hb, vA≠vB, and ρA≠ρB 
 
In this case, points A and B have the same elevation, but are on sites of different 
properties. The above derived equations (8) to (11) for power spectral density function 
and coherency loss function for motions at A and B should be used.  

The power spectral density function of the motion at the base rock, SR(ω), can be 
determined either from the given response spectrum of the site, or from the attenuation 
function such as those developed for east Northern America [Atikson and Boore 1995], 
or that for southwest Western Australia [Hao and Gaull 2004]. In this study, however, 
the very popularly used filtered Tajimi-Kanai function is applied [Ruiz and Penzien 
1969],  
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where ω1=1.636, ξ1=0.619 are the central frequency and damping ratio of the high pass 
filter, and ωg and ξg are the central frequency and damping ratio of the Tajimi-Kanai 
spectrum. They are assumed to be 31.4 rad/s and 0.6 respectively in this study.  
 
3. NUMERICAL CALCULATIONS 
 
Using the theoretical power spectral density function and coherency loss function 
derived above, ground motion intensity and spatial variation can be estimated.  

Figure 2 shows the base rock motion power spectral density function and coherency 
loss function used in this study. The parameter S0 (Equation (12)) depends on the 
ground motion amplitude and duration. In the present study, S0=1.0 is assumed. The 
coherency loss function is estimated with the assumption that the separation distance 
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d=50 m, and the coefficient β=0.01,0.02, and 0.05 for highly, intermediately and 
weakly correlated motions, respectively. The base rock has the shear wave velocity 
vR=3900 m/s and density ρR=2700 kg/m3. The wave incident angle α is 60°.  

To investigate the effect of the stiffness of the layers A and B on site amplification 
the amplitude of the site transfer function, surface motion power spectral density 
function, and phase angle of the transfer function are calculated with the assumption 
that ρA=2500 kg/m3, ρB=2000 kg/m3, and ha=hb=30 m. Figure 3 shows the amplitude of 
the transfer function with varying shear wave velocity of the site. The peak of the 
transfer function occurs at the fundamental vibration frequency of the site, fi=vi/4hi, 
where i=A or B. 
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Figure 2. Base rock motion power spectral density function and coherency loss 

function (β=0.01, highly, β=0.02, intermediately and β=0.05, weakly correlated) 
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Figure 3 Transfer functions of the layer A and B 
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Figure 4 Power spectral density function of the surface motion 

 
Figure 4 shows the corresponding power spectral density function of the surface 

ground motion. As shown, both layers A and B in general amplify the base rock motion. 
The amplification is most significant when the layer resonates with the incoming base 
rock motion. As shown, although the transfer function value for vB=100 m/s and 200 
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m/s are similar and they are much larger than the one for vB=500 m/s, the surface 
motion for vB=100 m/s is very small, indicating the soft layer deamplifies the base rock 
motion. Figure 5 shows the phase angle of the transfer function for the two layers. 
These phase angles affect the phase differences of the surface motion. The phase angles 
vary between -π/2 and π/2, and are dependent on the shear wave velocity of the layer.   
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Figure 5 Phase angles of the transfer functions for the two layers 

 
To investigate the effect of layer depth, the transfer function of the two layers, power 

spectral density function of the surface motion and phase angle of the transfer function 
are calculated. The shear wave velocities of the two layers are assumed to be vA=1500 
m/s and vB=200 m/s, respectively. The numerical results are shown in Figures 6 to 8. As 
shown, when hb=0 m, the transfer function is 1.0. Similar observations were made in 
Figures 2, 3 and 4. Soft layer always amplifies the base rock motion, and the 
amplification is most significant when the layer resonates with the incoming motion.     
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Figure 6 Transfer function of the two layers with different layer depth 
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Figure 7 Surface motion power spectral density functions for different layer depths 
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Figure 8 Phase angles of the transfer functions for different layer depth 

 
4. CONCLUSIONS 
 
Theoretical derivation of seismic motion spatial variation was carried out with 
consideration of local site amplification effect. The soil layer usually amplifies the base 
rock motion and changes the phase difference between base rock motions at any two 
points. The derived surface motion power spectral density function and spatial variation 
function can be used as the multiple inputs in dynamic structural response analysis. 
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